Skip to main content
LibreTexts - Ukrayinska

2.8: Багатоваріантний Перший Інтеграл

  • Page ID
    75345
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Після та узагальнення однозмінної похідної, множивши вищевказані рівняння по одному на відповідні,\(y_{i}^{\prime}=d y_{i} / d x\) ми маємо n рівнянь

    \[\frac{\partial f\left(\vec{y}, \vec{y}^{\prime}\right)}{\partial y_{i}} \frac{d y_{i}}{d x}-\frac{d}{d x}\left(\frac{\partial f\left(\vec{y}, \vec{y}^{\prime}\right)}{\partial y_{i}^{\prime}}\right) y_{i}^{\prime}=0\]

    Оскільки\(f\) не залежить явно від\(x\), у нас є

    \[\frac{d f}{d x}=\sum_{i=1}^{n}\left(\frac{\partial f}{\partial y_{i}} \frac{d y_{i}}{d x}+\frac{\partial f}{\partial y_{i}^{\prime}} \frac{d y_{i}^{\prime}}{d x}\right)\]

    і так само, як і для одного змінного випадку, ці рівняння дають

    \[\frac{d}{d x}\left(\sum_{i=1}^{n} y_{i}^{\prime} \frac{\partial f}{\partial y_{i}^{\prime}}-f\right)=0\]

    і (важливо!) перший інтеграл\(\sum_{i=1}^{n} y_{i}^{\prime} \frac{\partial f}{\partial y_{i}^{\prime}}-f=\mathrm{constant.}\)