Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
LibreTexts - Ukrayinska

4.4: Теорема Піфагора

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }  \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}} \newcommand{\kernel}{\mathrm{null}\,} \newcommand{\range}{\mathrm{range}\,} \newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}} \newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|} \newcommand{\inner}[2]{\langle #1, #2 \rangle} \newcommand{\Span}{\mathrm{span}} \newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}} \newcommand{\kernel}{\mathrm{null}\,} \newcommand{\range}{\mathrm{range}\,} \newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}} \newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|} \newcommand{\inner}[2]{\langle #1, #2 \rangle} \newcommand{\Span}{\mathrm{span}}

У прямокутному трикутнику сторони прямого кута називаються катетами трикутника, а решта - гіпотенузою. На малюнку\PageIndex{1} бічніAC іBC є катетами, а сторонаAB - гіпотенуза.

clipboard_e90204b4e2ed8e21086d6caac07a505e7.png
Малюнок\PageIndex{1}: Прямокутний трикутник.

Нижче наведена одна з найвідоміших теорем з математики.

Теорема\PageIndex{1}: Pythagorean Theorem

У прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів катетів. Тобто,

\text{leg}^{2}+\text{leg}^{2}=\text{hypotenuse}^{2}

Таким чином, для сторін трикутника на малюнку\PageIndex{1},

a^{2}+b^{2}=c^{2} \nonumber

Перш ніж довести Теорему\PageIndex{1}, наведемо кілька прикладів.

Приклад\PageIndex{1}

Знайтиx

clipboard_e17d5483ff803fa5185b945be12dc7750.png

Рішення

\begin{array} {rcl} {\text{leg}^2 + \text{leg}^2} & = & {\text{hyp}^2} \\ {3^2 + 4^2} & = & {x^2} \\ {9 + 16} & = & {x^2} \\ {25} & = & {x^2} \\ {5} & = & {x} \end{array}

Перевірка:

2020-11-17 7.38.11.PNG

Відповідь:x = 5.

Приклад\PageIndex{2}

Знайтиx:

clipboard_eb7ac06257600a605c9b3a04df0b7cc18.png

Рішення

\begin{array} {rcl} {\text{leg}^2 + \text{leg}^2} & = & {\text{hyp}^2} \\ {5^2 + x^2} & = & {10^2} \\ {25 + x^2} & = & {100} \\ {x^2} & = & {75} \\ {x} & = & {\sqrt{75} = \sqrt{25} \sqrt{3} = 5\sqrt{3}} \end{array}

Перевірка:

2020-11-17 7.41.41.PNG

Відповідь:x = 5\sqrt{3}.

Приклад\PageIndex{3}

Знайтиx:

clipboard_e14936d6e84046a616dccef57301f504c.png

Рішення

\begin{array} {rcl} {\text{leg}^2 + \text{leg}^2} & = & {\text{hyp}^2} \\ {5^2 + 5^2} & = & {x^2} \\ {25 + 25} & = & {x^2} \\ {50} & = & {x^2} \\ {x} & = & {\sqrt{50} = \sqrt{25} \sqrt{2} = 5\sqrt{2}} \end{array}

Перевірка:

2020-11-17 7.43.37.PNG

Відповідь:x = 5\sqrt{2}.

Приклад\PageIndex{4}

Знайтиx

clipboard_eaaa2e5f9f9b43e63a9b2017ad35dcbbc.png

Рішення

\begin{array} {rcl} {\text{leg}^2 + \text{leg}^2} & = & {\text{hyp}^2} \\ {x^2 + (x + 1)^2} & = & {(x + 2)^2} \\ {x^2 + x^2 + 2x + 1} & = & {x^2 + 4x + 4} \\ {x^2 + x^2 + 2x + 1 - x^2 - 4x - 4} & = & {0} \\ {x^2 - 2x - 3} & = & {0} \\ {(x - 3)(x + 1)} & = & {0} \end{array}

\begin{array} {rcl} {x - 3} & = & {0} \\ {x} & = & {3} \end{array}\begin{array} {rcl} {x + 1} & = & {0} \\ {x} & = & {-1} \end{array}

Ми відкидаємоx = -1, тому щоAC = x не може бути негативним.

Перевірка,x = 3:

2020-11-17 пнг

Відповідь:x = 3.

Тепер ми перекажемо і доведемо теорему\PageIndex{1}:

Теорема\PageIndex{1} Pythagorean Theorem

У прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів катетів. Тобто,

\text{leg}^2 + \text{leg}^2 = \text{hypotenuse}^2.

На малюнку\PageIndex{1},

a^2 + b^2 = c^2.

clipboard_e23b400bdbb092d0a60d8eaa87f876363.png
Малюнок\PageIndex{1}. A right triangle.
clipboard_e8252c1b03aac055dcf4fd9ba249b6087.png
Малюнок\PageIndex{2}. Draw CD perpendicular to AB.
Доказ

На малюнку\PageIndex{1}, draw CD perpendicular to AB. Let x = AD. Then BD = c - x (Figure \PageIndex{2}). As in Example \PageIndex{3}, section 4.2, \triangle ABC \sim \triangle ACD and \triangle ABC \sim \triangle CBD. From these two similarities we obtain two proportions:

2020-11-17 7.57.30.png

Зворотна теорема Піфагора також містить:

Теорема\PageIndex{2} (converse of the Pythagorean Theorem).

In a triangle, if the square of one side is equal to the sun of the squares of the other two sides then the triangle is a right triangle.

In Figure \PageIndex{3}, if c^2 = a^2 + b^2 then \triangle ABC is a right triangle with \angle C = 90^{\circ}.

clipboard_e32efa960b617195103c9bc7f5ef0214e.png
Figure \PageIndex{3}: If c^2 = a^2 + b^2 then \angle C = 90^{\circ}.
Proof

Draw a new triangle, \triangle DEF, so that \angle F = 90^{\circ}, d = a, and e = b (Figure \PageIndex{4}). \triangle DEF is a right triangle, so by Theorem \PageIndex{1}, f^2 = d^2 + e^2. We have f^2 = d^2 + e^2 = a^2 + b^2 = c^2 and therefore f = c. Therefore \triangle ABC \cong \triangle DEF because SSS = SSS. Therefore, \angle C + \angle F = 90^{\circ}.

屏幕快照 2020-11-17 下午8.06.53.png
Figure \PageIndex{4}: Given \triangle ABC, draw \triangle DEF so that \angle F = 90^{\circ}, d = a and e = b.
Example \PageIndex{5}

Is \triangle ABC a right triangle?

屏幕快照 2020-11-17 下午8.09.01.png

Solution

\text{AC}^2 = 7^2 = 49

\text{BC}^2 = 9^2 = 81

\text{AB}^2 = (\sqrt{130})^2 = 130

49 + 81 = 130.

so by Theorem \PageIndex{2}, \triangle ABC is a right triangle.

Answer: yes.

Example \PageIndex{6}

Find x and AB:

屏幕快照 2020-11-17 下午8.12.34.png

Solution

\begin{array} {rcl} {x^2 + 12^2} & = & {13^2} \\ {x^2 + 144} & = & {169} \\ {x^2} & = & {169 - 144} \\ {x^2} & = & {25} \\ {x} & = & {5} \end{array}

CDEF is a rectangle so EF = CD = 20 and CF = DE = 12. Therefore FB = 5 and AB = AE + EF + FB = 5 + 20 + 5 = 30.

Answer: x = 5, AB = 30.

Example \PageIndex{7}

Find x, AC and BD:

屏幕快照 2020-11-17 下午8.18.09.png

Solution

ABCD is a rhombus. The diagonals of a rhombus are perpendicular and bisect each other.

\begin{array} {rcl} {6^2 + 8^2} & = & {x^2} \\ {36 + 64} & = & {x^2} \\ {100} & = & {x^2} \\ {10} & = & {x} \end{array}

AC = 8 + 8 = 16, BD = 6 + 6 = 12.

Answer: x = 10, AC = 16, BD = 12.

Example \PageIndex{8}

A ladder 39 feet long leans against a building, How far up the side of the building does the ladder reach if the foot of the ladder is 15 feet from the building?

屏幕快照 2020-11-17 下午8.21.43.png

Solution

\begin{array} {rcl} {\text{leg}^2 + \text{leg}^2} & = & {\text{hyp}^2} \\ {x^2 + 15^2} & = & {39^2} \\ {x^2 + 225} & = & {1521} \\ {x^2} & = & {1521 - 225} \\ {x^2} & = & {1296} \\ {x} & = & {\sqrt{1296} = 36} \end{array}

Answer: 36 feet.

Historical Note

Pythagoras (c. 582 - 507 B.C.) was not the first to discover the theorem which bears his name. It was known long before his time by the Chinese, the Babylonians, and perhaps also the Egyptians and the Hindus, According to tradition, Pythagoras was the first to give a nroof of the theorem, His proof probably made use of areas, like the one suggested. In Figure \PageIndex{5} below, (each square contains four congruent right triangles with sides of lengths a, b, and c, In addition the square on the left contains a square with side a and a square with side b while the one on the right contains a square with side c.)

屏幕快照 2020-11-17 下午8.27.10.png
Figure \PageIndex{5}: Pythagoras may have proved a^2 + b^2 = c^2 in this way.
Since the time of Pythagoras, at least several hundred different proofs of the Pythagorean Theorem have been proposed, Pythagoras was the founder of the Pythagorean school, a secret religious society devoted to the study of philosophy, mathematics, and science. Its membership was a select group, which tended to keep the discoveries and practices of the society secret from outsiders. The Pythagoreans believed that numbers were the ultimate components of the universe and that all physical relationships could be expressed with whole numbers, This belief was prompted in part by their discovery that the notes of the musical scale were related by numerical ratios. The Pythagoreans made important contributions to medicine, physics, and astronomy, In geometry, they are credited with the angle s

um theorem for triangles, the properties of parallel lines, and the theory of similar triangles and proportions.

Problems

1 - 10. Find x. Leave answers in simplest radical form.

1.

Screen Shot 2020-11-17 at 8.44.19 PM.png

2.

Screen Shot 2020-11-17 at 8.44.39 PM.png

3.

Screen Shot 2020-11-17 at 8.45.25 PM.png

4.

Screen Shot 2020-11-17 at 8.45.43 PM.png

5.

Screen Shot 2020-11-17 at 8.46.01 PM.png

6.

Screen Shot 2020-11-17 at 8.46.20 PM.png

7.

Screen Shot 2020-11-17 at 8.46.36 PM.png

8.

Screen Shot 2020-11-17 at 8.46.50 PM.png

9.

Screen Shot 2020-11-17 at 8.47.05 PM.png

10.

Screen Shot 2020-11-17 at 8.47.21 PM.png

11 - 14. Find x and all sides of the triangle:

11.

Screen Shot 2020-11-17 at 8.47.45 PM.png

12.

Screen Shot 2020-11-17 at 8.48.03 PM.png

13.

Screen Shot 2020-11-17 at 8.48.17 PM.png

14.

Screen Shot 2020-11-17 at 8.48.44 PM.png

15 - 16. Find x:

15.

Screen Shot 2020-11-17 at 8.49.03 PM.png

16.

Screen Shot 2020-11-17 at 8.49.18 PM.png

17. Find x and AB.

Screen Shot 2020-11-17 at 8.49.42 PM.png

18. Find x:

Screen Shot 2020-11-17 at 8.49.59 PM.png

19. Find x, AC and BD:

Screen Shot 2020-11-17 at 8.50.15 PM.png

20. Find x, AC and BD:

Screen Shot 2020-11-17 at 8.50.56 PM.png

21. Find x and y:

Screen Shot 2020-11-17 at 8.51.15 PM.png

22. Find x, AC and BD:

Screen Shot 2020-11-17 at 8.51.34 PM.png

23. Find x, AB and BD:

Screen Shot 2020-11-17 at 8.51.56 PM.png

24. Find x, AB and AD:

Screen Shot 2020-11-17 at 8.52.15 PM.png

25 - 30. Is \triangle ABC a right triangle?

25.

Screen Shot 2020-11-17 at 8.52.34 PM.png

26.

Screen Shot 2020-11-17 at 8.52.49 PM.png

27.

Screen Shot 2020-11-17 at 8.53.26 PM.png

28.

Screen Shot 2020-11-17 at 8.53.42 PM.png

29.

Screen Shot 2020-11-17 at 8.53.57 PM.png

30.

Screen Shot 2020-11-17 at 8.54.13 PM.png

31. A ladder 25 feet long leans against a building, How far up the side of the building does the ladder reach if the foot of the ladder is 7 feet from the building?

32. A man travels 24 miles east and then 10 miles north. At the end of his journey how far is he from his starting point?

33. Can a table 9 feet wide (with its legs folded) fit through a rectangular doorway 4 feet by 8 feet?

Screen Shot 2020-11-17 at 8.54.30 PM.png

34. A baseball diamond is a square 90 feet on each side, Find the distance from home plate to second base (leave answer in simplest radical form).

Screen Shot 2020-11-17 at 8.55.11 PM.png