1.6: Гіперболічні функції
- Page ID
- 79744
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Гіперболічні функції є важливими функціями, визначеними з точки зору експоненціальних показників:\[\begin{align} \sinh(x) &= \frac{1}{2}\left(e^{x} - e^{-x}\right) \\ \cosh(x) &= \frac{1}{2}\left(e^{x} + e^{-x}\right) \\ \tanh(x) &= \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}\end{align}\] Вони мають властивості, які інтригуюче схожі на тригнометричні функції, такі як:\[\begin{align} \sinh(x+y) &= \sinh(x)\cosh(y) + \cosh(x)\sinh(y) \\ \cosh(x+y) &= \cosh(x)\cosh(y) + \sinh(x)\sinh(y)\end{align}\] Через ці ідентичності іноді зручніше працювати з гіперболічними функціями, а не експоненціальні показники. Під час цього курсу ми дізнаємося про заплутану взаємозв'язок між гіперболічною та тригонометричною функціями.