12.2: Примусове коливальне рух
Ми думаємо про масуm attached to a spring of force constant k and subject to a damping force b˙x, but also subject to a periodic sinusoidal force ˆFcosωt. Рівняння руху
m¨x+b˙x+kx=ˆFcosωt,
або, якщо ми розділимо наm:
Тутγ=bm,ω20=km,ˆf=ˆFm. ω is the forcing angular frequency and ω0 наведена власна частота маси і пружина при відсутності демпфування. Одна частина загального розв'язку Рівняння??? is the complementary function, which we have dealt with at length in Chapter 11. In this section I shall be interested in the particular integral. I shall not derive it here (those who are familiar with differential equations will be able to do so), but you should at least verify by differentiation and substitution that the following is a solution, and it is indeed the particular integral:
x=ˆf(ω20−ω2)2+γ2ω2[(ω20−ω2)cosωt+γωsinωt].
Це також може бути написано
x=ˆf[(ω20−ω2)2+γ2ω2]12cos(ωt−α),
де
cosα=ω20−ω2[(ω20−ω2)2+γ2ω2]12,cosα=γω[(ω20−ω2)2+γ2ω2]12,tanα=γωω20−ω2.
Частота відгуку така ж, як частота форсування, але міжx and F. Figure XII.1 shows α as a function of Ω=ωω0 for several different values of Γ=γω0.
Конкретний інтеграл також може бути записаний
x=ˆxcos(ωt−α),
де амплітуда зміщенняˆx varies with forcing frequency ω як
ˆx=ˆf[(ω20−ω2)2+γ2ω2]12.
Якщо зараз ввести безрозмірні величини
Ω=ωω0,Γ=γω0,ˆX=ˆxˆfω20,
Рівняння??? and ??? become
tanα=ΓΩ1−Ω2
і
ˆX=1[(1−Ω2)2+Γ2Ω2]12.
фазове відставанняα and the displacement amplitude ˆX(=ˆx(ˆfω20)) are shown as a function of forcing frequency for various values of the damping constant in figures XII.1 and 2.
Поширеним непорозумінням є те, що амплітуда зсуву найбільша, коли частота форсування дорівнює незагашеній частотіω0. Те, що це далеко не так, відразу видно з погляду на малюнок XII.2. Ми можемо знайти частоту, яка призводить до найбільшої амплітуди зміщення, максимізуючи Рівняння??? or ???. This is most easily achieved by minimizing the square of the denominator. Let D be the square of the denominator of equation ???, and let W=Ω2 іG=Γ2. ТодіD=(1−W)2+GW, which is greatest for W=1−12G або, за умовиγ<√2ω0
ω=√ω20−12γ2.
Це менше не тільки ніжω0, але і менше ніжω′. Для частоти, заданої рівнянням???, the displacement amplitude will be
ˆxmax=ˆfγ(ω20−14γ2)12.
Локус максимумів на малюнку XII.2 знайдено шляхом вилученняγ з рівняння 12.2.7 іdˆxdω=0 яке дає
ˆxmax=ˆf√ω40−ω4.
Розв'язок, заданий рівняннями??? and ??? is the particular integral. As pointed out in Section 1 of this chapter, the complete solution is the sum of the particular integral and the complementary function, the latter being the unforced solutions of Chapter 11. The particular integral represents the steady state solution, whereas the complementary function, which dies out with time, is a transient solution. When a mechanical oscillation is started, or when an alternating current electric circuit is first switched on, the solution is the sum of transient and steady state parts, the former more or less rapidly dying away. Often when an electric fuse blows, the overload is caused by the large, but temporary, amplitude of the transient part of the solution.
Рівняння??? and ??? give the displacement of the system as a function of time. Differentiation with respect to time gives the velocity as a function of time. Thus:
˙x=v=−ˆvsin(ωt−α),
де
ˆv=ˆfω[(ω20−ω2)2+γ2ω2]12
це амплітуда швидкості. У безрозмірних одиницях це можна записати
ˆV=Ω[(1−Ω2)2+Γ2Ω2]12,
де
ˆV=ˆvˆfω0.
Це проілюстровано на малюнку XII.3.
Залишено читачеві показати, що амплітуда швидкості найбільша і дорівнюєˆfγ when ω=ω0.
We have now found the phase lag and the displacement and velocity amplitudes as a function of forcing frequency, but I must now try the reader's patience one step further for the most important part of the analysis, which really must not be skipped. Damping of oscillatory motion implies that some of the mechanical energy (which, in an undamped system, alternates between kinetic and potential energy) is lost - or, rather, that it is dissipated as heat. This happens if the damping is caused by the oscillator being immersed in a viscous fluid, or if it is caused by the repeated expansion and compression of a spring, or, in an electric circuit, by the dissipation of heat in the resistive part of the circuit. We aim now to find the rate at which the mechanical energy is dissipated as heat.
We return to the equation of motion, Equation ???:
m¨x+b˙x+kx=ˆFcosωt
and multiply each side by ˙x:
m˙x¨x+b˙x2+kx˙x=˙xˆFcosωt.
Introduce the total mechanical energy:
E=12m˙x2+12kx2.
The instantaneous rate of change of E is m˙x¨x+kx˙x while the instantaneous rate at which F does work is ˙xFcosωt. The difference (see Equation ???), b˙x2, is therefore the rate at which work is being dissipated as heat, which, of course, is zero if b=0.
The average of b˙x2 over a complete period is
¯b˙x2=bˆf2ω2(ω20−ω2)+γ2ω2¯sin2(ωt−α)
where the bars denote the average value over a period. But ¯sin2(ωt−α)=12, so the average rate at which work is being dissipated as heat, for which I shall use the symbol ˙Q is
˙Q=bˆf2ω22[(ω20−ω2)2+γ2ω2]
The reader should check that the right hand side has the dimensions of rate of dissipation of energy and hence the SI unit of watts.
In dimensionless units, in which ˙Q∗=˙Q(bˆf22ω0) this can be written
˙Q∗=Ω2(1−Ω2)2+Γ2Ω2.
This is illustrated in figure XII.4. The reader can easily prove that the rate at which work is dissipated as heat is greatest when the forcing frequency is equal to ω0.
Summary
Phase lag: Equation ???
cosα=ω20−ω2[(ω20−ω2)2+γ2ω2]12,cosα=γω[(ω20−ω2)2+γ2ω2]12,tanα=γωω20−ω2.
Displacement amplitude: Equation ???
ˆx=ˆf[(ω20−ω2)2+γ2ω2]12
Velocity amplitude: Equation ???
ˆv=ˆfω[(ω20−ω2)2+γ2ω2]12
Rate of dissipation of work as heat: Equation ???
˙Q=mγˆf2ω22[(ω20−ω2)2+γ2ω2].
In terms of dimensionless variables,
Phase lag: Equation ???
tanα=ΓΩ1−Ω2
Displacement amplitude: Equation ???
ˆX=1[(1−Ω2)2+Γ2Ω2]12
Velocity amplitude: ???
ˆV=Ω[(1−Ω2)2+Γ2Ω2]12
Rate of dissipation of work as heat: ???
˙Q∗=Ω2(1−Ω2)2+Γ2Ω2