7.3: Водневий спектр
У 1885 році Джей Бальмер, викладач жіночого коледжу в Швейцарії, розробив просту формулу, що стосується довжин хвиль ліній у видимій області атомного водневого спектра до натуральних чисел, і ці лінії з тих пір називаються серією Бальмера і позначаються Hα , Нβ, Нγ,... , Починаючи з довгохвильового кінця. Стандартні довжини хвиль повітря в нм і вакуумні хвильові числа в μ м -1 такі:
\ begin {масив} {l c c}
&&\ лямбда &\ сигма_0\
&&&\ текст {нм} &\ му\ текст {м} ^ {-1}
\\ текст {H}\ альфа & 656.28 & 1.5233
\\ текст {H}\ бета & 486.13 & 2.065\
\ текст {H}\ гамма & 434. 05 & 2.3032\
\ текст {H}\ дельта & 410.17 & 2.4373\\ текст {H}
\ epsilon & 397.01 & 2.5181\
\ кінець {масив}
Серія врешті-решт сходиться до межі серії, межі Бальмера, при стандартній довжині хвилі повітря364.60 nm або вакуумної хвилі числа2.7420 μm−1. У тому, як сьогодні зазвичай пишеться формула Бальмера, вакуум-хвильнічисла рядків в ряді Бальмера задаються
σ0=R(14−1n2), n=3,4,5...
nбудучи 3, 4, 5 і т.д.Hα, Hβ, Hγ, для і т.д. числоR називається постійною Рідберга для водню, і має значення10.9679 μm−1.
Пізніше подібна серія, яка буде названа серією Lyman, була виявлена в ультрафіолеті, а кілька подібних серій було знайдено в інфрачервоному діапазоні, названих на честь Пашена, Брекетта, Пфанда, Хамфріса, Хансена і Стронга, і послідовно менш відомих людей. Дійсно, в радіо-області спектру є серії, названі лише для чисел; таким чином, ми можемо говорити про109α лінію.
Для генерації хвильових чисел рядків у кожному з цих рядів можна використовувати єдину формулу:
σ0=R(1n21−1n22), n2=n1+1,n1+2,...
Тутn1=1,2,3,4,5,6... для серії Лайман, Балмер, Пашен, Брекетт, Пфонд, Хамфріс...
Подібні (не ідентичні) спектри спостерігаються для інших воднеподібних атомівHe+, Li++, Be+++, таких як тощо, константи Рідберга для цих атомів відрізняються від постійної Рідберга для водню. Дейтерій і тритій мають дуже схожі спектри, і їх константи Рідберга дуже близькі до1H атома.
Кожна «лінія» водневого спектра, насправді, має тонку структуру, яку нелегко побачити і зазвичай для її спостереження потрібні ретельно розроблені експерименти. Ця тонка структура не повинна турбувати нас в даний час, але пізніше ми будемо зобов'язані розглянути її. Цікава історична історія, пов'язана з тонкою структурою водню, полягає в тому, що кількістьe2/(4πϵ0ℏc) відіграє помітну роль в теорії, яка його описує. Ця величина, яка є безрозмірним чистим числом, називається постійною тонкої структуриα, а зворотна її величина близька до простого числа 137. Сер Артур Еддінгтон, один з найбільших фігур астрофізики на початку ХХ століття, цікавився можливими зв'язками між фундаментальними константами фізики та натуральними числами, і став майже одержимим уявленням про те, що зворотна константа тонкої структури повинна бути рівно 137, навіть наполягаючи на тому, щоб повісити капелюх на конференц-зал coatpeg № 137.