5.5E: Вправи для розділу 5.5
- Page ID
- 61808
1) Чому\(u\) -заміна називається зміною змінної?
2) Якщо\( f=g∘h\) при зміні правила\(\dfrac{d}{dx}(g∘h)(x)=g′(h(x))h′(x)\) ланцюга слід брати\( u=g(x)\) або\(u=h(x)?\)
- Відповідь
- \(u=h(x)\)
У вправах 3 - 7 перевірте кожну особу за допомогою диференціації. Потім, використовуючи зазначену\(u\) -підстановку,\(f\) ідентифікуйте таку, щоб інтеграл набув вигляду\(\displaystyle∫f(u)\,du.\)
3)\(\displaystyle ∫x\sqrt{x+1}\,dx=\frac{2}{15}(x+1)^{3/2}(3x−2)+C;\quad u=x+1\)
4)\(\displaystyle∫\frac{x^2}{\sqrt{x−1}}\,dx=\frac{2}{15}\sqrt{x−1}(3x^2+4x+8)+C,\quad (x>1);\quad u=x−1\)
- Відповідь
- \( f(u)=\dfrac{(u+1)^2}{\sqrt{u}}\)
5)\(\displaystyle∫x\sqrt{4x^2+9}\,dx=\frac{1}{12}(4x^2+9)^{3/2}+C;\quad u=4x^2+9\)
6)\(\displaystyle∫\frac{x}{\sqrt{4x^2+9}}\,dx=\frac{1}{4}\sqrt{4x^2+9}+C;\quad u=4x^2+9\)
- Відповідь
- \( du=8x\,dx;\quad f(u)=\frac{1}{8\sqrt{u}}\)
7)\(\displaystyle∫\frac{x}{(4x^2+9)^2}\,dx=−\frac{1}{8(4x^2+9)} + C;\quad u=4x^2+9\)
У вправах 8 - 17 знайдіть антидериватив за допомогою зазначеної заміни.
8)\(\displaystyle∫(x+1)^4\,dx;\quad u=x+1\)
- Відповідь
- \(\displaystyle∫(x+1)^4\,dx = \frac{1}{5}(x+1)^5+C\)
9)\(\displaystyle∫(x−1)^5\,dx;\quad u=x−1\)
10)\(\displaystyle∫(2x−3)^{−7}\,dx;\quad u=2x−3\)
- Відповідь
- \(\displaystyle∫(2x−3)^{−7}\,dx = −\frac{1}{12(2x−3)^6}+C\)
11)\(\displaystyle∫(3x−2)^{−11}\,dx;\quad u=3x−2\)
12)\(\displaystyle∫\frac{x}{\sqrt{x^2+1}}\,dx;\quad u=x^2+1\)
- Відповідь
- \(\displaystyle∫\frac{x}{\sqrt{x^2+1}}\,dx = \sqrt{x^2+1}+C\)
13)\(\displaystyle∫\frac{x}{\sqrt{1−x^2}}\,dx;\quad u=1−x^2\)
14)\(\displaystyle∫(x−1)(x^2−2x)^3\,dx;\quad u=x^2−2x\)
- Відповідь
- \(\displaystyle∫(x−1)(x^2−2x)^3\,dx = \frac{1}{8}(x^2−2x)^4+C\)
15)\(\displaystyle∫(x^2−2x)(x^3−3x^2)^2\,dx;\quad u=x^3=3x^2\)
16)\(\displaystyle∫\cos^3 θ\,dθ;\quad u=\sin θ\) (Підказка:\(\cos^2 θ=1−\sin^2 θ\))
- Відповідь
- \(\displaystyle∫\cos^3 θ\,dθ = \sin θ−\dfrac{\sin^3 θ}{3}+C\)
17)\(\displaystyle ∫\sin^3 θ\,dθ;\quad u=\cos θ\) (Підказка:\(\sin^2 θ=1−\cos^2θ\))
У вправах 18 - 34 використовуйте відповідну зміну змінних для визначення невизначеного інтеграла.
18)\(\displaystyle∫x(1−x)^{99}\,dx\)
- Відповідь
- \ (\ почати {вирівнювати*}\ стиль відображенняx (1−x) ^ {99}\, dx &=\ розриву {(1−x) ^ {101}} {101}} {1−x) ^ {100}} {100}} +C\\ [4pt] &=-\ гідророзриву {(1-х) ^ {100}} {10100}\ [4pt]
&=-\ розриву {(1-х) ^ {100}} {10100}\ великий [100} x + 1\ великий] +C\ end {вирівнювати*}\)
19)\(\displaystyle∫t(1−t^2)^{10}dt\)
20)\(\displaystyle∫(11x−7)^{−3}\,dx\)
- Відповідь
- \(\displaystyle∫(11x−7)^{−3}\,dx = −\frac{1}{22(11x−7)^2}+C\)
21)\(\displaystyle∫(7x−11)^4\,dx\)
22)\(\displaystyle∫\cos^3 θ\sin θ\,dθ\)
- Відповідь
- \(\displaystyle∫\cos^3 θ\sin θ\,dθ = −\frac{\cos^4 θ}{4}+C\)
23)\(\displaystyle∫\sin^7 θ\cos θ\,dθ\)
24)\(\displaystyle∫\cos^2(πt)\sin(πt)\,dt\)
- Відповідь
- \(\displaystyle∫\cos^2(πt)\sin(πt)\,dt = −\frac{cos^3(πt)}{3π}+C\)
25)\(\displaystyle∫\sin^2 x\cos^3 x\,dx\) (Підказка:\(\sin^2 x+\cos^2 x=1\))
26)\(\displaystyle∫t\sin(t^2)\cos(t^2)\,dt\)
- Відповідь
- \(\displaystyle∫t\sin(t^2)\cos(t^2)\,dt = −\frac{1}{4}\cos^2(t^2)+C\)
27)\(\displaystyle∫t^2\cos^2(t^3)\sin(t^3)\,dt\)
28)\(\displaystyle∫\frac{x^2}{(x^3−3)^2}\,dx\)
- Відповідь
- \(\displaystyle∫\frac{x^2}{(x^3−3)^2}\,dx = −\frac{1}{3(x^3−3)}+C\)
29)\(\displaystyle∫\frac{x^3}{\sqrt{1−x^2}}\,dx\)
30)\(\displaystyle∫\frac{y^5}{(1−y^3)^{3/2}}\,dy\)
- Відповідь
- \(\displaystyle∫\frac{y^5}{(1−y^3)^{3/2}}\,dy = −\frac{2(y^3−2)}{3\sqrt{1−y^3}}+C\)
31)\(\displaystyle∫\cos θ(1−\cos θ)^{99}\sin θ\,dθ\)
32)\(\displaystyle∫(1−\cos^3 θ)^{10}\cos^2 θ\sin θ\,dθ\)
- Відповідь
- \(\displaystyle∫(1−\cos^3 θ)^{10}\cos^2 θ\sin θ\,dθ = \frac{1}{33}(1−\cos^3 θ)^{11}+C\)
33)\(\displaystyle∫(\cos θ−1)(\cos^2 θ−2\cos θ)^3\sin θ\,dθ\)
34)\(\displaystyle∫(\sin^2 θ−2\sin θ)(\sin^3 θ−3\sin^2 θ)^3\cos θ\,dθ\)
- Відповідь
- \(\displaystyle∫(\sin^2 θ−2\sin θ)(\sin^3 θ−3\sin^2 θ)^3\cos θ\,dθ = \frac{1}{12}(\sin^3 θ−3\sin^2 θ)^4+C\)
У вправах 35 - 38 використовуйте калькулятор для оцінки площі під кривою, використовуючи ліві суми Рімана з 50 термінами, потім використовуйте підстановку для вирішення точної відповіді.
35) [Т]\(y=3(1−x)^2\) над\([0,2]\)
36) [Т]\(y=x(1−x^2)^3\) над\([−1,2]\)
- Відповідь
- \(L_{50}=−8.5779.\)Точна площа -\(\frac{−81}{8}\) одиниці\(^2\).
37) [Т]\(y=\sin x(1−\cos x)^2\) над\([0,π]\)
38) [Т]\(y=\dfrac{x}{(x^2+1)^2}\) над\([−1,1]\)
- Відповідь
- \(L_{50}=−0.006399\). Точна площа дорівнює 0.
У вправах 39 - 44 використовуйте зміну змінних для оцінки певного інтеграла.
39)\(\displaystyle∫^1_0x\sqrt{1−x^2}\,dx\)
40)\(\displaystyle∫^1_0\frac{x}{\sqrt{1+x^2}}\,dx\)
- Відповідь
- \(\displaystyle u=1+x^2,\quad du=2x\,dx,\quad ∫^1_0\frac{x}{\sqrt{1+x^2}}\,dx = \frac{1}{2}∫^2_1u^{−1/2}du=\sqrt{2}−1\)
41)\(\displaystyle∫^2_0\frac{t}{\sqrt{5+t^2}}\,dt\)
42)\(\displaystyle∫^1_0\frac{t^2}{\sqrt{1+t^3}}\,dt\)
- Відповідь
- \(\displaystyle u=1+t^3,\quad du=3t^2,\quad ∫^1_0\frac{t^2}{\sqrt{1+t^3}}\,dt = \frac{1}{3}∫^2_1u^{−1/2}du=\frac{2}{3}(\sqrt{2}−1)\)
43)\(\displaystyle∫^{π/4}_0\sec^2 θ\tan θ\,dθ\)
44)\(\displaystyle∫^{π/4}_0\frac{\sin θ}{\cos^4 θ}\,dθ\)
- Відповідь
- \(\displaystyle u=\cos θ,\quad du=−\sin θ\,dθ,\quad \int^{π/4}_0\frac{\sin θ}{\cos^4 θ}\,dθ = -∫_1^{\sqrt{2}/2}u^{−4}\,du = ∫^1_{\sqrt{2}/2}u^{−4}\,du=\frac{1}{3}(2\sqrt{2}−1)\)
У вправах 45 - 50 оцінюйте невизначений інтеграл\(\displaystyle ∫f(x)\,dx\) з постійним\(C=0\) використанням\(u\) -підстановки. Потім графік функції і антидериватив протягом зазначеного інтервалу. Якщо можливо, оцініть значення,\(C\) яке потрібно було б додати до антидериватива, щоб зробити його рівним певному інтегралу\(\displaystyle F(x)=∫^x_af(t)\,dt\), з лівою кінцевою точкою заданого інтервалу.
45) [Т]\(\displaystyle∫(2x+1)e^{x^2+x−6}\,dx\) над\([−3,2]\)
46) [Т]\(\displaystyle∫\frac{\cos(\ln(2x))}{x}\,dx\) на\([0,2]\)
- Відповідь
-
Антидериватив є\(y=\sin(\ln(2x))\). Оскільки антидериватив не є безперервним при\(x=0\), не можна знайти значення С, яке б змусило\(y=\sin(\ln(2x))−C\) працювати як певний інтеграл.
47) [Т]\(\displaystyle ∫\frac{3x^2+2x+1}{\sqrt{x^3+x^2+x+4}}\,dx\) над\([−1,2]\)
48) [Т]\(\displaystyle ∫\frac{\sin x}{\cos^3x}\,dx\) над\(\left[−\frac{π}{3},\frac{π}{3}\right]\)
- Відповідь
-
Антидериватив є\(y=\frac{1}{2}\sec^2 x\). Ви повинні взяти\(C=−2\) так, щоб\(F(−\frac{π}{3})=0.\)
49) [Т]\(\displaystyle ∫(x+2)e^{−x^2−4x+3}\,dx\) над\([−5,1]\)
50) [Т]\(\displaystyle ∫3x^2\sqrt{2x^3+1}\,dx\) понад\([0,1]\)
- Відповідь
-
Антидериватив є\( y=\frac{1}{3}(2x^3+1)^{3/2}\). Слід взяти\(C=−\frac{1}{3}\).
51) Якщо\(h(a)=h(b)\) в\(\displaystyle ∫^b_ag'(h(x))h(x)\,dx,\) чому можна сказати про значення інтеграла?
52) Чи\(\displaystyle ∫^2_0\frac{x}{1−x^2}\,dx\) нормально підміна\(u=1−x^2\) в певному інтегралі? Якщо ні, то чому б і ні?
- Відповідь
- Ні, тому що цілісний переривчастий при\(x=1\).
У вправах 53 - 59 використовуйте зміну змінних, щоб показати, що кожен певний інтеграл дорівнює нулю.
53)\(\displaystyle ∫^π_0\cos^2(2θ)\sin(2θ)\,dθ\)
54)\(\displaystyle ∫^\sqrt{π}_0t\cos(t^2)\sin(t^2)\,dt\)
- Відповідь
- \(u=\sin(t^2);\)інтеграл стає\(\displaystyle \frac{1}{2}∫^0_0u\,du.\)
55)\(\displaystyle ∫^1_0(1−2t)\,dt\)
56)\(\displaystyle ∫^1_0\frac{1−2t}{1+(t−\frac{1}{2})^2}\,dt\)
- Відповідь
- \(u=1+(t−\frac{1}{2})^2;\)інтеграл стає\(\displaystyle −∫^{5/4}_{5/4}\frac{1}{u}\,du\).
57)\(\displaystyle ∫^π_0\sin\left(\left(t−\tfrac{π}{2}\right)^3\right)\cos\left(t−\tfrac{π}{2}\right)\,dt\)
58)\(\displaystyle ∫^2_0(1−t)\cos(πt)\,dt\)
- Відповідь
- \(u=1−t;\)Оскільки ціле непарне, інтеграл стає
\[∫^{−1}_1u\cos\big(π(1−u)\big)\,du=∫^{−1}_1u[\cos π\cos u−\sin π\sin u]\,du=−∫^{−1}_1u\cos u\,du=∫_{-1}^1u\cos u\,du=0\nonumber \]
59)\(\displaystyle ∫^{3π/4}_{π/4}\sin^2 t\cos t\,dt\)
60) Показати, що середнє значення\(f(x)\) за інтервал\([a,b]\) таке ж, як і середнє значення\(f(cx)\) за інтервал\(\left[\frac{a}{c},\frac{b}{c}\right]\) для\(c>0.\)
- Відповідь
- Налаштування\(u=cx\) і\(du=c\,dx\) отримує вас\(\displaystyle \frac{1}{\frac{b}{c}−\frac{a}{c}}∫^{b/c}_{a/c}f(cx)\,dx=\frac{c}{b−a}∫^{u=b}_{u=a}f(u)\frac{du}{c}=\frac{1}{b−a}∫^b_af(u)\,du.\)
61) Знайдіть площу під графіком\(f(t)=\dfrac{t}{(1+t^2)^a}\) між\(t=0\) і\(t=x\) де\(a>0\) і\(a≠1\) закріплено, і оцініть межу як\(x→∞\).
62) Знайдіть область під графіком\(g(t)=\dfrac{t}{(1−t^2)^a}\) між\(t=0\) і\(t=x\), де\(0<x<1\) і\(a>0\) закріплена. Оцініть ліміт як\(x→1\).
- Відповідь
- \(\displaystyle ∫^x_0g(t)\,dt=\frac{1}{2}∫^1_{u=1−x^2} \frac{du}{u^a}=\frac{1}{2(1−a)}u^{1−a}∣1u=\frac{1}{2(1−a)}(1−(1−x^2)^{1−a})\)Як\(x→1\) межа є\(\dfrac{1}{2(1−a)}\) якщо\(a<1\), а межа розходиться на\(+∞\) if\(a>1\).
63) Площа півкола радіуса\(1\) може бути виражена як\(\displaystyle ∫^1_{−1}\sqrt{1−x^2}\,dx\). Використовуйте\(x=\cos t\) підстановку для вираження площі півкола як інтеграла тригонометричної функції. Вам не потрібно обчислювати інтеграл.
64) Площа верхньої половини еліпса з великою віссю, яка є\(x\) -віссю від\(x=−1\) до а і з другорядною віссю, яка є\(y\) -віссю від\(y=−b\) до,\(y=b\) може бути записана як\(\displaystyle ∫^a_{−a}b\sqrt{1−\frac{x^2}{a^2}}\,dx\). Використовуйте\(x=a\cos t\) підстановку для вираження цієї області через інтеграл тригонометричної функції. Вам не потрібно обчислювати інтеграл.
- Відповідь
- \(\displaystyle ∫^{t=0}_{t=π}b\sqrt{1−\cos^2 t}×(−a\sin t)\,dt=∫^{t=π}_{t=0}ab\sin^2 t\,dt\)
65) [T] Наступний графік має функцію виду\( f(t)=a\sin(nt)+b\sin(mt)\). Оцініть коефіцієнти\(a\)\(b\) і частотні параметри\(n\) і\(m\). Використовуйте ці оцінки для наближення\(\displaystyle ∫^π_0f(t)\,dt\).
66) [T] Наступний графік має функцію виду\(f(x)=a\cos(nt)+b\cos(mt)\). Оцініть коефіцієнти\(a\)\(b\) і частотні параметри\(n\) і\(m\). Використовуйте ці оцінки для наближення\(\displaystyle ∫^π_0f(t)\,dt.\)
- Відповідь
- \(f(t)=2\cos(3t)−\cos(2t);\quad \displaystyle ∫^{π/2}_0(2\cos(3t)−\cos(2t))\,dt=−\frac{2}{3}\)