6.2: Ортогональні доповнення
- Зрозумійте основні властивості ортогональних доповнень.
- Навчіться обчислювати ортогональне доповнення підпростору.
- Рецепти: ярлики для обчислення ортогональних доповнень загальних підпросторів.
- Малюнок: ортогональні доповнення вR2 іR3.
- Теорема: рядок рядка дорівнює рангу стовпця.
- Словникові слова: ортогональне доповнення, пробіл рядків.
Важливо буде обчислити множину всіх векторів, які є ортогональними до заданого набору векторів. Виявляється, що вектор ортогональний набору векторів тоді і тільки тоді, коли він ортогональний до прольоту цих векторів, який є підпростором, тому ми обмежуємося випадком підпросторів.
Визначення ортогонального доповнення
Прийняття ортогонального доповнення - це операція, яка виконується на підпросторах.
WДозволяти бути підпросторомRn. Його ортогональним доповненням є підпростір
W⊥={v in Rn∣v⋅w=0 for all w in W}.
Символ інодіW⊥ читається «Wпідступник».
Це набір усіх векторівvRn, які є ортогональними до всіх векторів вW. Нижче ми покажемо 15, що дійсноW⊥ є підпростором.
Тепер у нас є два схожих на вигляд фрагменти позначення:
AT is the transpose of a matrix A.W⊥ is the orthogonal complement of a subspace W.
Намагайтеся не плутати ці два.
Картинки ортогональних доповнень
Ортогональне доповнення лініїW через початок вR2 є перпендикулярною лінієюW⊥.
Малюнок6.2.1
The orthogonal complement of a line W in R3 is the perpendicular plane W⊥.
Figure 6.2.3
Ортогональним доповненням площиниW вR3 є перпендикулярна лініяW⊥.
Малюнок6.2.5
We see in the above pictures that (W⊥)⊥=W.
The orthogonal complement of Rn is {0}, since the zero vector is the only vector that is orthogonal to all of the vectors in Rn.
For the same reason, we have {0}⊥=Rn.
Computing Orthogonal Complements
Since any subspace is a span, the following proposition gives a recipe for computing the orthogonal complement of any subspace. However, below we will give several shortcuts for computing the orthogonal complements of other common kinds of subspaces–in particular, null spaces. To compute the orthogonal complement of a general subspace, usually it is best to rewrite the subspace as the column space or null space of a matrix, as in Note 2.6.3 in Section 2.6.
Let A be a matrix and let W=Col(A). Then
W⊥=Nul(AT).
- Proof
-
To justify the first equality, we need to show that a vector x is perpendicular to the all of the vectors in W if and only if it is perpendicular only to v1,v2,…,vm. Since the vi are contained in W, we really only have to show that if x⋅v1=x⋅v2=⋯=x⋅vm=0, then x is perpendicular to every vector v in W. Indeed, any vector in W has the form v=c1v1+c2v2+⋯+cmvm for suitable scalars c1,c2,…,cm, so
x⋅v=x⋅(c1v1+c2v2+⋯+cmvm)=c1(x⋅v1)+c2(x⋅v2)+⋯+cm(x⋅vm)=c1(0)+c2(0)+⋯+cm(0)=0.
Therefore, x is in W⊥.
To prove the second equality, we let
A=(—vT1——vT2—⋮—vTm—).
By the row-column rule for matrix multiplication Definition 2.3.3 in Section 2.3, for any vector x in Rn we have
Ax=(vT1xvT2x⋮vTmx)=(v1⋅xv2⋅x⋮vm⋅x).
Therefore, x is in Nul(A) if and only if x is perpendicular to each vector v1,v2,…,vm.
Since column spaces are the same as spans, we can rephrase the proposition as follows. Let v1,v2,…,vm be vectors in Rn, and let W=Span{v1,v2,…,vm}. Then
W⊥={all vectors orthogonal to each v1,v2,…,vm}=Nul(—vT1——vT2—⋮—vTm—).
Again, it is important to be able to go easily back and forth between spans and column spaces. If you are handed a span, you can apply the proposition once you have rewritten your span as a column space.
By the proposition, computing the orthogonal complement of a span means solving a system of linear equations. For example, if
v1=(172)v2=(−231)
then Span{v1,v2}⊥ is the solution set of the homogeneous linear system associated to the matrix
(—vT1——vT2—)=(172−231).
This is the solution set of the system of equations
{x1+7x2+2x3=0−2x1+3x2+x3=0.
Compute W⊥, where
W=Span{(172),(−231)}.
Solution
According to Proposition 6.2.1, we need to compute the null space of the matrix
(172−231)RREF→(10−1/17015/17).
The free variable is x3, so the parametric form of the solution set is x1=x3/17,x2=−5x3/17, and the parametric vector form is
(x1x2x3)=x3(1/17−5/171).
Scaling by a factor of 17, we see that
W⊥=Span{(1−517)}.
We can check our work:
(172)⋅(1−517)=0(−231)⋅(1−517)=0.
Find all vectors orthogonal to v=(11−1).
Solution
According to Proposition 6.2.1, we need to compute the null space of the matrix
A=(—v—)=(11−1).
This matrix is in reduced-row echelon form. The parametric form for the solution set is x1=−x2+x3, so the parametric vector form of the general solution is
x=(x1x2x3)=x2(−110)+x3(101).
Therefore, the answer is the plane
Span{(−110),(101)}.
Compute
Span{(11−1),(111)}⊥.
Solution
According to Proposition 6.2.1, we need to compute the null space of the matrix
A=(11−1111)RREF→(110001).
The parametric vector form of the solution is
(x1x2x3)=x2(−110).
Therefore, the answer is the line
Span{(−110)}.
In order to find shortcuts for computing orthogonal complements, we need the following basic facts. Looking back the the above examples, all of these facts should be believable.
Let W be a subspace of Rn. Then:
- W⊥ is also a subspace of Rn.
- (W⊥)⊥=W.
- dim(W)+dim(W⊥)=n.
- Proof
-
For the first assertion, we verify the three defining properties of subspaces, Definition 2.6.2 in Section 2.6.
- The zero vector is in W⊥ because the zero vector is orthogonal to every vector in Rn.
- Let u,v be in W⊥, so u⋅x=0 and v⋅x=0 for every vector x in W. We must verify that (u+v)⋅x=0 for every x in W. Indeed, we have (u+v)⋅x=u⋅x+v⋅x=0+0=0.
- Let u be in W⊥, so u⋅x=0 for every x in W, and let c be a scalar. We must verify that (cu)⋅x=0 for every x in W. Indeed, we have (cu)⋅x=c(u⋅x)=c0=0.
Next we prove the third assertion. Let v1,v2,…,vm be a basis for W, so m=dim(W), and let vm+1,vm+2,…,vk be a basis for W⊥, so k−m=dim(W⊥). We need to show k=n. First we claim that {v1,v2,…,vm,vm+1,vm+2,…,vk} is linearly independent. Suppose that c1v1+c2v2+⋯+ckvk=0. Let w=c1v1+c2v2+⋯+cmvm and w′=cm+1vm+1+cm+2vm+2+⋯+ckvk, so w is in W, w′ is in W′, and w+w′=0. Then w=−w′ is in both W and W⊥, which implies w is perpendicular to itself. In particular, w⋅w=0, so w=0, and hence w′=0. Therefore, all coefficients ci are equal to zero, because {v1,v2,…,vm} and {vm+1,vm+2,…,vk} are linearly independent.
It follows from the previous paragraph that k≤n. Suppose that k<n. Then the matrix
A=(—vT1——vT2—⋮—vTk—)
has more columns than rows (it is “wide”), so its null space is nonzero by Note 3.2.1 in Section 3.2. Let x be a nonzero vector in Nul(A). Then
0=Ax=(vT1xvT2x⋮vTkx)=(v1⋅xv2⋅x⋮vk⋅x)
by the row-column rule for matrix multiplication Definition 2.3.3 in Section 2.3. Since v1⋅x=v2⋅x=⋯=vm⋅x=0, it follows from Proposition 6.2.1 that x is in W⊥, and similarly, x is in (W⊥)⊥. As above, this implies x is orthogonal to itself, which contradicts our assumption that x is nonzero. Therefore, k=n, as desired.
Finally, we prove the second assertion. Clearly W is contained in (W⊥)⊥: this says that everything in W is perpendicular to the set of all vectors perpendicular to everything in W. Let m=dim(W). By 3, we have dim(W⊥)=n−m, so dim((W⊥)⊥)=n−(n−m)=m. The only m-dimensional subspace of (W⊥)⊥ is all of (W⊥)⊥, so (W⊥)⊥=W.
See subsection Pictures of orthogonal complements, for pictures of the second property. As for the third: for example, if W is a (2-dimensional) plane in R4, then W⊥ is another (2-dimensional) plane. Explicitly, we have
Span{e1,e2}⊥={(xyzw) in R|(xyzw)⋅(1000)=0 and (xyzw)(0100)=0}={(00zw) in R4}=Span{e3,e4}:
the orthogonal complement of the xy-plane is the zw-plane.
The row space of a matrix A is the span of the rows of A, and is denoted Row(A).
If A is an m×n matrix, then the rows of A are vectors with n entries, so Row(A) is a subspace of Rn. Equivalently, since the rows of A are the columns of AT, the row space of A is the column space of AT:
Row(A)=Col(AT).
We showed in the above Proposition 6.2.3 that if A has rows vT1,vT2,…,vTm, then
Row(A)⊥=Span{v1,v2,…,vm}⊥=Nul(A).
Taking orthogonal complements of both sides and using the second fact 6.2.1 gives
Row(A)=Nul(A)⊥.
Replacing A by AT and remembering that Row(A)=Col(AT) gives
Col(A)⊥=Nul(AT)andCol(A)=Nul(AT)⊥.
To summarize:
For any vectors v1,v2,…,vm, we have
Span{v1,v2,…,vm}⊥=Nul(—vT1——vT2—⋮—vTm—).
For any matrix A, we have
Row(A)⊥=Nul(A)Nul(A)⊥=Row(A)Col(A)⊥=Nul(AT)Nul(AT)⊥=Col(A).
As mentioned in the beginning of this subsection, in order to compute the orthogonal complement of a general subspace, usually it is best to rewrite the subspace as the column space or null space of a matrix.
Compute the orthogonal complement of the subspace
W={(x,y,z) in R3∣3x+2y=z}.
Solution
Rewriting, we see that W is the solution set of the system of equations 3x+2y−z=0, i.e., the null space of the matrix A=(32−1). Therefore,
W⊥=Row(A)=Span{(32−1)}.
No row reduction was needed!
Find the orthogonal complement of the 5-eigenspace of the matrix
A=(24−1320−243).
Solution
The 5-eigenspace is
W=Nul(A−5I3)=Nul(−34−13−30−24−2),
so
W⊥=Row(−34−13−30−24−2)=Span{(−34−1),(3−30),(−24−2)}.
These vectors are necessarily linearly dependent (why)?
Row rank and Column Rank
Suppose that A is an m×n matrix. Let us refer to the dimensions of Col(A) and Row(A) as the row rank and the column rank of A (note that the column rank of A is the same as the rank of A). The next theorem says that the row and column ranks are the same. This is surprising for a couple of reasons. First, Row(A) lies in Rn and Col(A) lies in Rm. Also, the theorem implies that A and AT have the same number of pivots, even though the reduced row echelon forms of A and AT have nothing to do with each other otherwise.
Let A be a matrix. Then the row rank of A is equal to the column rank of A.
- Proof
-
By Theorem 2.9.1 in Section 2.9, we have
dimCol(A)+dimNul(A)=n.
On the other hand the third fact 6.2.1 says that
dimNul(A)⊥+dimNul(A)=n,
which implies dimCol(A)=dimNul(A)⊥. Since Nul(A)⊥=Row(A), we have
dimCol(A)=dimRow(A),
as desired.
In particular, by Corollary 2.7.1 in Section 2.7 both the row rank and the column rank are equal to the number of pivots of A.