Skip to main content
LibreTexts - Ukrayinska

7.6: Теорема Тейлора переглянута

  • Page ID
    62407
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Далі наведено версію теореми Тейлора з альтернативною формою терміну, що залишився.

    Теорема\(\PageIndex{1}\)

    (Теорема Тейлора)

    Припустимо\(f \in C^{(n+1)}(a, b), \alpha \in(a, b),\), і

    \[P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(\alpha)}{k !}(x-\alpha)^{k}.\]

    Тоді, для будь-якого\(x \in(a, b)\),

    \[f(x)=P_{n}(x)+\int_{\alpha}^{x} \frac{f^{(n+1)}(t)}{n !}(x-t)^{n} d t.\]

    Доказ

    За фундаментальною теоремою обчислення ми маємо

    \[\int_{\alpha}^{x} f^{\prime}(t) d t=f(x)-f(\alpha),\]

    що означає, що

    \[f(x)=f(\alpha)+\int_{\alpha}^{x} f^{\prime}(t) d t.\]

    Звідси теорема тримає для\(n=0 .\) припустимо, що результат має для\(n=k-1,\) того, що є,

    \[f(x)=P_{k-1}(x)+\int_{\alpha}^{x} \frac{f^{(k)}(t)}{(k-1) !}(x-t)^{k-1} d t.\]

    Нехай

    \[F(t)=f^{(k)}(t),\]

    \[g(t)=\frac{(x-t)^{k-1}}{(k-1) !},\]

    і

    \[G(t)=-\frac{(x-t)^{k}}{k !}.\]

    Тоді

    \[\begin{aligned} \int_{\alpha}^{x} \frac{f^{(k)}(t)}{(k-1) !}(x-t)^{k-1} d t &=\int_{\alpha}^{x} F(t) g(t) d t \\ &=F(x) G(x)-F(\alpha) G(\alpha)-\int_{\alpha}^{x} F^{\prime}(t) G(t) d t \\ &=\frac{f^{(k)}(\alpha)(x-\alpha)^{k}}{k !}+\int_{\alpha}^{x} \frac{f^{(k+1)}(t)}{k !}(x-t)^{k} d t, \end{aligned}\]

    Звідси

    \[f(x)=P_{k}(x)+\int_{\alpha}^{x} \frac{f^{(k+1)}(t)}{k !}(x-t)^{k} d t,\]

    і тому теорема тримає для\(n=k\). \(\quad\)Q.E.D.

    Вправа\(\PageIndex{1}\)

    (Коші форма залишку)

    За умов теореми Тейлора, як тільки що сказано, показують, що

    \[\int_{\alpha}^{x} \frac{f^{(n+1)}(t)}{n !}(x-t)^{n} d t=\frac{f^{(n+1)}(\gamma)}{n !}(x-\gamma)^{n}(x-\alpha)\]

    для деяких\(\gamma\) між\(\alpha\) і\(x .\)

    Вправа\(\PageIndex{2}\)

    (Лагранж форма залишку)

    За умов теореми Тейлора, як тільки що сказано, показують, що

    \[\int_{\alpha}^{x} \frac{f^{(n+1)}(t)}{n !}(x-t)^{n} d t=\frac{f^{(n+1)}(\gamma)}{(n+1) !}(x-\alpha)^{n+1}\]

    для деяких\(\gamma\) між\(\alpha\) і\(x .\) Зверніть увагу, що це форма залишку в теоремі,\(6.6 .1,\) хоча при дещо більш обмежувальних припущеннях.