1.4: Безперервний розподіл ймовірностей
- Page ID
- 76867
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Припустимо, що змінна\(u\) може приймати безперервний діапазон можливих значень. Загалом, ми очікуємо, що ймовірність, що\(u\) набуває значення\(u\)\(u+du\) в діапазоні, буде прямо пропорційною\(du\), в межі, що\(du\rightarrow 0\). Іншими словами,\[P(u\in u:u+du) = P(u)\,du,\] де\(P(u)\) відома як щільність ймовірності. Більш ранні результати (1.2.4), (1.3.4) та (1.3.11) узагальнюють простим способом, щоб дати:\[\begin{aligned} 1&= \int_{-\infty}^\infty P(u)\,du,\\[0.5ex] \langle u\rangle &= \int_{-\infty}^\infty P(u)\,u\,du,\\[0.5ex] \left\langle({\mit\Delta} u)^2\right\rangle &= \int_{-\infty}^\infty P(u)\, (u-\langle u\rangle)^2\,du = \left\langle u^{\,2}\right\rangle-\langle u\rangle^2,\end{aligned}\] відповідно.