Додаток B: Таблиця перетворень Лапласа
Функціяu є функцією Хевісайд,δ є дельта-функцією Дірака, і
Γ(t)=∫∞0e−ττt−1dτ,erf(t)=2√π∫t0e−τ2dτ,erfc(t)=1−erf(t).
ТаблицяДодатокB.1
f(t) | F(s)=L{f(t)}=∫∞0e−stf(t)dt |
---|---|
\ (f (t)\) ">C | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">Cs |
\ (f (t)\) ">t | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1s2 |
\ (f (t)\) ">t2 | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">2s3 |
\ (f (t)\) ">tn | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">n!sn+1 |
\ (f (t)\) ">tp(p>0) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">Γ(p+1)sp+1 |
\ (f (t)\) ">e−at | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1s+a |
\ (f (t)\) ">sin(ωt) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">ωs2+ω2 |
\ (f (t)\) ">cos(ωt) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">ss2+ω2 |
\ (f (t)\) ">sinh(ωt) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">ωs2−ω2 |
\ (f (t)\) ">cosh(ωt) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">ss2−ω2 |
\ (f (t)\) ">u(t−a) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">e−ass |
\ (f (t)\) ">δ(t) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1 |
\ (f (t)\) ">δ(t−a) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">e−as |
\ (f (t)\) ">erf(t2a) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1se(as)2erfc(as) |
\ (f (t)\) ">1√πtexp(−a24t)(a≥0) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">e−as√s |
\ (f (t)\) ">1√πt−aea2terfc(a√t)(a>0) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1√s+a |
\ (f (t)\) ">af(t)+bg(t) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">aF(s)+bG(s) |
\ (f (t)\) ">f(at)(a>0) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1aF(sa) |
\ (f (t)\) ">f(t−a)u(t−a) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">e−asF(s) |
\ (f (t)\) ">e−atf(t) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">F(s+a) |
\ (f (t)\) ">g′(t) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">sG(s)−g(0) |
\ (f (t)\) ">g″(t) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">s2G(s)−sg(0)−g′(0) |
\ (f (t)\) ">g‴(t) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">s3G(s)−s2g(0)−sg′(0)−g″(0) |
\ (f (t)\) ">g(n)(t) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">snG(s)−sn−1g(0)−⋯−g(n−1)(0) |
\ (f (t)\) ">(f∗g)(t)=∫t0f(τ)g(t−τ)dτ | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">F(s)G(s) |
\ (f (t)\) ">tf(t) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">−F′(s) |
\ (f (t)\) ">tnf(t) | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">(−1)nF(n)(s) |
\ (f (t)\) ">∫t0f(τ)dτ | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1sF(s) |
\ (f (t)\) ">f(t)t | \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">∫∞sF(σ)dσ |