Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
LibreTexts - Ukrayinska

Додаток B: Таблиця перетворень Лапласа

Функціяu є функцією Хевісайд,δ є дельта-функцією Дірака, і

Γ(t)=0eττt1dτ,erf(t)=2πt0eτ2dτ,erfc(t)=1erf(t).

ТаблицяДодатокB.1

f(t) F(s)=L{f(t)}=0estf(t)dt
\ (f (t)\) ">C \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">Cs
\ (f (t)\) ">t \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1s2
\ (f (t)\) ">t2 \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">2s3
\ (f (t)\) ">tn \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">n!sn+1
\ (f (t)\) ">tp(p>0) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">Γ(p+1)sp+1
\ (f (t)\) ">eat \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1s+a
\ (f (t)\) ">sin(ωt) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">ωs2+ω2
\ (f (t)\) ">cos(ωt) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">ss2+ω2
\ (f (t)\) ">sinh(ωt) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">ωs2ω2
\ (f (t)\) ">cosh(ωt) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">ss2ω2
\ (f (t)\) ">u(ta) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">eass
\ (f (t)\) ">δ(t) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1
\ (f (t)\) ">δ(ta) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">eas
\ (f (t)\) ">erf(t2a) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1se(as)2erfc(as)
\ (f (t)\) ">1πtexp(a24t)(a0) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">eass
\ (f (t)\) ">1πtaea2terfc(at)(a>0) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1s+a
\ (f (t)\) ">af(t)+bg(t) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">aF(s)+bG(s)
\ (f (t)\) ">f(at)(a>0) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1aF(sa)
\ (f (t)\) ">f(ta)u(ta) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">easF(s)
\ (f (t)\) ">eatf(t) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">F(s+a)
\ (f (t)\) ">g(t) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">sG(s)g(0)
\ (f (t)\) ">g(t) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">s2G(s)sg(0)g(0)
\ (f (t)\) ">g(t) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">s3G(s)s2g(0)sg(0)g(0)
\ (f (t)\) ">g(n)(t) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">snG(s)sn1g(0)g(n1)(0)
\ (f (t)\) ">(fg)(t)=t0f(τ)g(tτ)dτ \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">F(s)G(s)
\ (f (t)\) ">tf(t) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">F(s)
\ (f (t)\) ">tnf(t) \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">(1)nF(n)(s)
\ (f (t)\) ">t0f(τ)dτ \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">1sF(s)
\ (f (t)\) ">f(t)t \ (F (s) =\ математичний {L}\ {f (t)\} =\ int_ {0} ^ {\ infty} e^ {-st} f (t) дт\) ">sF(σ)dσ