Skip to main content
LibreTexts - Ukrayinska

8.6 Розширені матриці

  • Page ID
    54551
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Причина, чому правила для скорочення рядків матриць такі ж, як і правила усунення коефіцієнтів при вирішенні системи рівнянь, полягає в тому, що ви по суті робите те ж саме в кожному конкретному випадку. Коли ви пишете і переписуєте рівняння кожен раз, коли ви в кінцевому підсумку записуєте багато додаткової інформації. Матриці піклуються про цю інформацію, вбудовуючи її в місце розташування кожного запису. Як би ви використовували матриці для написання наступної системи рівнянь?

    \(5 x+y=6\)

    \(x+y=10\)

    РУБРИКА Розв'язування систем рівнянь з доповненими матрицями

    Для того щоб представити систему у вигляді матричного рівняння, спочатку запишіть всі рівняння в стандартному вигляді так, щоб коефіцієнти змінних шикувалися в стовпці. Потім скопіюйте лише коефіцієнти в матричному масиві коефіцієнтів. Далі скопіюйте змінні в матриці змінних і константи в постійну матрицю.

    \(x+y+z=9\)

    \(x+2 y+3 z=22\)

    \(2 x+3 y+4 z=31\)

    \(\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}9 \\ 22 \\ 31\end{array}\right]\)

    Причина, чому це працює, полягає в тому, як визначено множення матриці.

    \(\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 x+1 y+1 z \\ 1 x+2 y+3 z \\ 2 z+3 y+4 z\end{array}\right]=\left[\begin{array}{c}9 \\ 22 \\ 31\end{array}\right]\)

    Зверніть увагу, як покласти дужки навколо двох матриць праворуч робить дуже мало, щоб приховати той факт, що це просто регулярна система 3 рівнянь і 3 змінних.

    Після того, як ваша система представлена у вигляді матриці, ви можете вирішити її за допомогою розширеної матриці. Доповнена матриця - це дві матриці, які з'єднані між собою і працюють так, ніби вони є єдиною матрицею. У разі розв'язання системи потрібно доповнити матрицю коефіцієнтів і постійну матрицю. Вертикальна лінія вказує на поділ між матрицею коефіцієнтів і постійною матрицею.

    \(\left[\begin{array}{lll|c}1 & 1 & 1 & 9 \\ 1 & 2 & 3 & 22 \\ 2 & 3 & 4 & 31\end{array}\right]\)

    Щоб вирішити, зменшіть матрицю до зменшеної форми ешелону рядка.

    \(\left[\begin{array}{lll|c}1 & 1 & 1 & 9 \\ 1 & 2 & 3 & 22 \\ 2 & 3 & 4 & 31\end{array}\right]\)

    \(R_{1} \cdot-1+R_{2} \rightarrow\left[\begin{array}{lll|c}1 & 1 & 1 & 9 \\ 0 & 1 & 2 & 13 \\ 2 & 3 & 4 & 31\end{array}\right]\)

    \(R_{1} \cdot-2+R_{3} \rightarrow\left[\begin{array}{lll|c}1 & 1 & 1 & 9 \\ 0 & 1 & 2 & 13 \\ 0 & 1 & 2 & 13\end{array}\right]\)

    \(R_{2} \cdot-1+R_{3} \rightarrow\left[\begin{array}{lll|c}1 & 1 & 1 & 9 \\ 0 & 1 & 2 & 13 \\ 0 & 0 & 0 & 0\end{array}\right]\)

    Оскільки останній рядок - це всі 0, ця система залежить. Тому існує нескінченна кількість рішень.

    Приклади

    Приклад 1

    Раніше вас запитали, як записати систему рівнянь у вигляді матричного рівняння. Якби ви писали систему як матричне рівняння, ви могли б записати:

    \(\begin{aligned} 5 x+y &=6 \\ x+y &=10 \\\left[\begin{array}{ll}5 & 1 \\ 1 & 1\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right] &=\left[\begin{array}{c}6 \\ 10\end{array}\right] \end{aligned}\)

    Приклад 2

    Вирішіть наступну систему за допомогою доповненої матриці.

    \(x+y+z=6\)

    \(x-y-z=-4\)

    \(x+2 y+3 z=14\)

    \(\left[\begin{array}{ccc|c}1 & 1 & 1 & 6 \\ 1 & -1 & -1 & -4 \\ 1 & 2 & 3 & 14\end{array}\right]\)

    \(R_{1} \cdot-1+R_{2} \rightarrow\left[\begin{array}{ccc|c}1 & 1 & 1 & 6 \\ 0 & -2 & -2 & -10 \\ 1 & 2 & 3 & 8\end{array}\right]\)

    \(R_{1} \cdot-1+R_{3} \rightarrow\left[\begin{array}{ccc|c}1 & 1 & 1 & 6 \\ 0 & -2 & -2 & -10 \\ 0 & 1 & 2 & 8\end{array}\right]\)

    \(R_{3} \cdot-1+R_{1} \rightarrow\left[\begin{array}{ccc|c}1 & 0 & -1 & -2 \\ 0 & -2 & -2 & -10 \\ 0 & 1 & 2 & 8\end{array}\right]\)

    \(R_{3} \cdot 3+R_{2} \rightarrow\left[\begin{array}{ccc|c}1 & 0 & -1 & -2 \\ 0 & 1 & 4 & 14 \\ 0 & 1 & 2 & 8\end{array}\right]\)

    \(R_{2} \cdot-1+R_{3} \rightarrow\left[\begin{array}{ccc|c}1 & 0 & -1 & -2 \\ 0 & 1 & 4 & 14 \\ 0 & 0 & -2 & -6\end{array}\right]\)

    \(R_{3} \div-2 \rightarrow\left[\begin{array}{ccc|c}1 & 0 & -1 & -2 \\ 0 & 1 & 4 & 14 \\ 0 & 0 & 1 & 3\end{array}\right]\)

    \(R_{3}+R_{1} \rightarrow\left[\begin{array}{ccc|c}1 & 0 & 0 & 1 \\ 0 & 1 & 4 & 14 \\ 0 & 0 & 1 & 3\end{array}\right]\)

    \(R_{3} \cdot-4+R_{2} \rightarrow\left[\begin{array}{lll|l}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3\end{array}\right]\)

    Кожну матрицю можна інтерпретувати як власну лінійну систему. Остаточну доповнену матрицю можна інтерпретувати як:

    \(1 x+0 y+0 z=1\)

    \(0 x+1 y+0 z=2\)

    \(0 x+0 y+1 z=3\)

    Що означає\(x=1, y=2, z=3\).

    Приклад 3

    Вирішіть наступну систему за допомогою доповнених матриць.

    \(w+x+z=11\)

    \(w+x=9\)

    \(x+y=7\)

    \(y+z=5\)

    Хоча заміна буде працювати в цій задачі, ідея полягає в тому, щоб продемонструвати, як розширені матриці будуть працювати навіть з більшими матрицями.

    \(\left[\begin{array}{llll|c}1 & 1 & 0 & 1 & 11 \\ 1 & 1 & 0 & 0 & 9 \\ 0 & 1 & 1 & 0 & 7 \\ 0 & 0 & 1 & 1 & 5\end{array}\right]\)

    Перемикач\(R_{2}, R_{3},\) і\(R_{4} \rightarrow\left[\begin{array}{cccc|c}1 & 1 & 0 & 1 & 11 \\ 0 & 1 & 1 & 0 & 7 \\ 0 & 0 & 1 & 1 & 5 \\ 1 & 1 & 0 & 0 & 9\end{array}\right]\)

    \(R_{1} \cdot-1+R_{4} \rightarrow\left[\begin{array}{cccc|c}1 & 1 & 0 & 1 & 11 \\ 0 & 1 & 1 & 0 & 7 \\ 0 & 0 & 1 & 1 & 5 \\ 0 & 0 & 0 & -1 & -2\end{array}\right]\)

    \(R_{4} \cdot-1 \rightarrow\left[\begin{array}{llll|c}1 & 1 & 0 & 1 & 11 \\ 0 & 1 & 1 & 0 & 7 \\ 0 & 0 & 1 & 1 & 5 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]\)

    \(R_{4} \cdot-1+R_{1} \rightarrow\left[\begin{array}{llll|l}1 & 1 & 0 & 0 & 9 \\ 0 & 1 & 1 & 0 & 7 \\ 0 & 0 & 1 & 1 & 5 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]\)

    \(R_{4} \cdot-1+R_{3} \rightarrow\left[\begin{array}{llll|l}1 & 1 & 0 & 0 & 9 \\ 0 & 1 & 1 & 0 & 7 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]\)

    \(R_{3} \cdot-1+R_{2} \rightarrow\left[\begin{array}{llll|l}1 & 1 & 0 & 0 & 9 \\ 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]\)

    \(R_{2} \cdot-1+R_{1} \rightarrow\left[\begin{array}{llll|c}1 & 0 & 0 & 0 & 5 \\ 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]\)

    Таким чином,\(w=5, x=4, y=3, z=2\)

    Приклад 4

    Використовуйте доповнену матрицю для вирішення наступної системи.

    \(3 x+y=-15\)

    \(x+2 y=15\)

    Кроки скорочення рядків не показані, тільки початкова і кінцева доповнені матриці.

    \(\left[\begin{array}{cc|c}3 & 1 & -15 \\ 1 & 2 & 15\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & 0 & -9 \\ 0 & 1 & 12\end{array}\right]\)

    Приклад 5

    Використовуйте доповнену матрицю для вирішення наступної системи.

    \(\begin{aligned}-a+b-c &=0 \\ 2 a-2 b-3 c &=25 \\ 3 a-4 b+3 c &=2 \end{aligned}\)

    Кроки скорочення рядків не показані, тільки початкова і кінцева доповнені матриці.

    \(\left[\begin{array}{ccc|c}-1 & 1 & -1 & 0 \\ 2 & -2 & -3 & 25 \\ 3 & -4 & 3 & 2\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & -5\end{array}\right]\)

    Рецензія

    Розв'яжіть наступні системи рівнянь за допомогою доповнених матриць. Якщо одного рішення не існує, поясніть, чому б і ні.

    \[\begin{array}{c} 4 x-2 y &=-20 \\ x-3 y &=-15 \end{array}\]

    \[\begin{array}{c} 3 x+5 y &=33 \\ -x &-2 y=-13 \end{array}\]

    \[\begin{array}{c} x+4 y=11 \\ 3 x+12 y=33 \end{array}\]

    \[\begin{array}{c} -3 x+y=-7 \\ -x+4 y=5 \end{array}\]

    \[\begin{array}{c} 3 x+y &=6 \\ -6 x-2 y &=10 \end{array}\]

    \[\begin{array}{c} 2 x-y+z &=4 \\ 4 x+7 y-z &=38 \\ -x+3 y+2 z &=23 \end{array}\]

    \[\begin{array}{c} 4 x+y-z &=-16 \\ -3 x+4 y+z &=18 \\ x+y-3 z &=-17 \end{array}\]

    \[\begin{array}{c} 3 x+2 y-3 z &=7 \\ -x+5 y+2 z &=29 \\ x+2 y+z &=15 \end{array}\]

    \[\begin{array}{c} 2 x+y-2 z &=4 \\ -4 x-2 y+4 z &=-8 \\ 3 x+y-z &=5 \end{array}\]

    \[\begin{array}{c} -x+3 y+z=11 \\ 3 x+y+2 z=27 \\ 5 x-y-z=5 \end{array}\]

    \[\begin{array}{c} 3 x+2 y+4 z &=21 \\ -2 x+3 y+z &=-11 \\ x+2 y-3 z &=-3 \end{array}\]

    \[\begin{array}{c} -x+2 y-6 z=4 \\ 8 x+5 y+3 z=-8 \\ 2 x-4 y+12 z=5 \end{array}\]

    \[\begin{array}{c} 3 x+5 y+8 z &=37 \\ -6 x+3 y+z &=42 \\ x+3 y-2 z &=5 \end{array}\]

    \[\begin{array}{c} 4 x+y-6 z &=-38 \\ 2 x+7 y+8 z &=108 \\ -3 x+2 y-3 z &=-15 \end{array}\]

    \[\begin{array}{c} 6 x+3 y-2 z &=-22 \\ -4 x-2 y+4 z &=28 \\ 3 x+3 y+2 z &=7 \end{array}\]