Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
LibreTexts - Ukrayinska

9.2: Потенціал магнітного вектора

Поширеною проблемою в електромагнітиці є визначення полів, випромінюваних заданим розподілом струму. Цю задачу можна вирішити за допомогою рівнянь Максвелла разом з відповідними електромагнітними граничними умовами. Для часово-гармонічних (синусоїдально-змінних) струмів ми використовуємо фазорове подання. 1 Враховуючи заданий розподіл струму\widetilde{\bf J} і бажані електромагнітні поля\widetilde{\bf E} і\widetilde{\bf H}, відповідними рівняннями є:

\nabla \cdot \widetilde{\bf E} = \widetilde{\rho}_v/\epsilon \label{m0195_eMDE0}

\nabla \times \widetilde{\bf E} = -j\omega\mu\widetilde{\bf H} \label{m0195_eMCE}

\nabla \cdot \widetilde{\bf H} = 0 \label{m0195_eMDH}

\nabla \times \widetilde{\bf H} = \widetilde{\bf J} + j\omega\epsilon\widetilde{\bf E} \label{m0195_eMCH}

де\widetilde{\rho}_v - об'ємна щільність заряду. У більшості інженерних проблем мова йде про поширення через носії, які добре моделюються як однорідні середовища з нейтральним зарядом, такі як вільний простір. 2 Тому в цьому розділі ми обмежимо нашу сферу застосування проблемами, в яких\widetilde{\rho}_v=0. Таким чином, рівняння\ ref {M0195_EMDE0} спрощує:

\nabla \cdot \widetilde{\bf E} = 0 \label{m0195_eMDE}

Для розв'язання лінійної системи рівнянь з частинними похідними\ ref {M0195_EMCE} -\ ref {M0195_EMDE} корисно викликати поняття потенціалу магнітного вектора. Потенціал магнітного вектора - це векторне поле, яке має ту корисну властивість, що воно здатне представляти як електричне, так і магнітне поля як єдине поле. Це дозволяє звести грізну систему рівнянь, визначених вище, до єдиного рівняння, яке простіше вирішити. Крім того, це єдине рівняння виявляється хвильовим рівнянням, з невеликою різницею, що рівняння буде математично неоднорідним, а неоднорідна частина представляє вихідний струм.

Потенціал магнітного вектора\widetilde{\bf A} визначається наступним співвідношенням:

\boxed{ \widetilde{\bf B} \triangleq \nabla \times \widetilde{\bf A} } \label{m0195_eMVPdef}

де\widetilde{\bf B}=\mu\widetilde{\bf H} - щільність магнітного потоку. Магнітне поле з'являється в трьох рівняннях Максвелла. Щоб рівняння\ ref {M0195_EMVPdef} було розумним визначенням,\nabla \times \widetilde{\bf A} має дати розумні результати при заміні\mu\widetilde{\bf H} в кожному з цих рівнянь. Давайте спочатку перевіримо на відповідність закону Гаусса для магнітних полів, Equation\ ref {M0195_EMDH}. Здійснюючи заміну, отримуємо:

\nabla \cdot \left( \nabla \times \widetilde{\bf A} \right) = 0 \nonumber

Це виявляється математичною ідентичністю, яка застосовується до будь-якого векторного поля (див. Рівняння 12.3.3 в додатку 12.3). Тому рівняння\ ref {M0195_EMVPdef} узгоджується із законом Гауса для магнітних полів.

Далі перевіряємо на узгодженість за допомогою Equation\ ref {M0195_EMCE}. Здійснюємо заміну:

\nabla \times \widetilde{\bf E} = -j\omega\left(\nabla \times \widetilde{\bf A}\right) \nonumber

Зібравши терміни зліва, отримуємо

\nabla \times \left( \widetilde{\bf E} +j\omega \widetilde{\bf A} \right) = 0 \label{m0195_ephi1}

Тепер, з причин, які стануть очевидними лише за мить, ми визначаємо нове скалярне поле\widetilde{V} і вимагаємо від нього задоволення наступного співвідношення:

-\nabla\widetilde{V} \triangleq \widetilde{\bf E} +j\omega \widetilde{\bf A} \label{m0195_ephi2}

Використовуючи це визначення, Рівняння\ ref {m0195_ephi1} стає:

\nabla \times \left( -\nabla\widetilde{V} \right) = 0 \nonumber

який просто

\nabla \times \nabla\widetilde{V} = 0 \nonumber

Ще раз ми отримали математичну ідентичність, яка застосовується до будь-якого векторного поля (див. Рівняння 12.3.4 у Додатку 12.3). Тому\widetilde{V} може бути будь-яке математично допустиме скалярне поле. Згодом рівняння\ ref {M0195_EMVPdef} узгоджується з Equation\ ref {M0195_EMCE} (рівняння завитка Максвелла для електричного поля) для будь-якого вибору\widetilde{V}, який ми схильні зробити.

Проникливі читачі можуть вже зрозуміти, що ми тут до. Рівняння\ ref {m0195_ephi2} дуже схоже на зв'язок{\bf E} = -\nabla V з електростатикою, 3 в якійV знаходиться скалярне поле електричного потенціалу. Очевидно, Equation\ ref {m0195_ephi2} є вдосконаленою версією цього зв'язку, яка враховує зв'язок з{\bf H} (тут, представленим{\bf A}) у випадку, що змінюється у часі (рішуче нестатичний) випадок. Ця оцінка є правильною, але давайте не будемо занадто далеко випереджати себе: Як продемонстровано в попередньому пункті, ми ще не змушені робити якийсь конкретний вибір\widetilde{V}, і ця свобода буде використана пізніше в цьому розділі.

Далі перевіряємо на узгодженість за допомогою Equation\ ref {M0195_EMCH}. Здійснюємо заміну:

\nabla \times \left(\frac{1}{\mu}\nabla \times \widetilde{\bf A}\right) = \widetilde{\bf J} +j\omega\epsilon\widetilde{\bf E} \nonumber

Множення обох сторін рівняння на\mu:

\nabla \times \nabla \times \widetilde{\bf A} = \mu\widetilde{\bf J} +j\omega\mu\epsilon\widetilde{\bf E} \nonumber

Далі ми використовуємо рівняння\ ref {m0195_ephi2} для усунення\widetilde{\bf E}, отримання:

\nabla \times \nabla \times \widetilde{\bf A} = \mu\widetilde{\bf J} +j\omega\mu\epsilon\left(-\nabla\widetilde V -j\omega \widetilde{\bf A}\right) \nonumber

Після трохи алгебри отримаємо

\nabla \times \nabla \times \widetilde{\bf A} = \omega^2\mu\epsilon\widetilde{\bf A} - j\omega\mu\epsilon\nabla\widetilde V + \mu\widetilde{\bf J} \label{m0195_e1}

Тепер ми замінюємо ліву частину цього рівняння, використовуючи векторну ідентичність Рівняння 12.3.8 у Додатку 12.3:

\nabla \times \nabla \times \widetilde{\bf A} \equiv \nabla\left(\nabla \cdot \widetilde{\bf A}\right) - \nabla^2 \widetilde{\bf A} \nonumber

Рівняння\ ref {m0195_e1} стає:

\nabla\left(\nabla \cdot \widetilde{\bf A}\right) - \nabla^2 \widetilde{\bf A} = \omega^2\mu\epsilon\widetilde{\bf A} - j\omega\mu\epsilon\nabla\widetilde V + \mu\widetilde{\bf J} \nonumber

Тепер множимо обидві сторони на-1 і переставляємо терміни:

\nabla^2 \widetilde{\bf A} +\omega^2\mu\epsilon\widetilde{\bf A} = \nabla\left(\nabla \cdot \widetilde{\bf A}\right) +j\omega\mu\epsilon\nabla\widetilde V -\mu\widetilde{\bf J} \nonumber

Поєднання термінів з правого боку:

\nabla^2 \widetilde{\bf A} +\omega^2\mu\epsilon\widetilde{\bf A} = \nabla\left( \nabla \cdot \widetilde{\bf A} +j\omega\mu\epsilon\widetilde V\right) -\mu\widetilde{\bf J} \label{m0195_eWEA1}

Тепер розглянемо вираз,\nabla \cdot \widetilde{\bf A} +j\omega\mu\epsilon\widetilde V що з'являється в дужках в правій частині рівняння. Раніше ми встановили, що по суті\widetilde V може бути будь-яке скалярне поле — з математичної точки зору ми вільні вибирати. Посилаючись на цю свободу, ми тепер вимагаємо\widetilde V задовольнити такий вираз:

\nabla \cdot \widetilde{\bf A} +j\omega\mu\epsilon\widetilde V = 0 \label{m0195_eLGC}

Зрозуміло, що це вигідно в тому сенсі, що Equation\ ref {m0195_Ewea1} тепер значно спрощено. Це рівняння стає:

\boxed{ \nabla^2 \widetilde{\bf A} +\omega^2\mu\epsilon\widetilde{\bf A} = -\mu\widetilde{\bf J} } \label{m0195_ePDEA}

Зверніть увагу, що цей вираз є хвильовим рівнянням. По суті, це те саме хвильове рівняння, яке визначає\widetilde{\bf E} і\widetilde{\bf H} в областях, що не мають джерела, за винятком того, що права сторона не дорівнює нулю. Використовуючи математичну термінологію, ми отримали рівняння для\widetilde{\bf A} у вигляді неоднорідного рівняння з частинними похідними, де неоднорідна частина включає — тут не дивно — струм джерела\widetilde{\bf J}.

Тепер у нас є те, що нам потрібно, щоб знайти електромагнітні поля, випромінювані розподілом струму. Процедура полягає просто в наступному:

  1. Розв'яжіть рівняння з частинними похідними\ ref {M0195_EPDEA} для\widetilde{\bf A} відповідних електромагнітних граничних умов.
  2. \widetilde{\bf H} = (1/\mu) \nabla \times \widetilde{\bf A}
  3. \widetilde{\bf E}тепер можна визначити за\widetilde{\bf H} допомогою Equation\ ref {M0195_EMCH}.

Підводячи підсумки:

Потенціал магнітного вектора\widetilde{\bf A} являє собою векторне поле, визначене Equation\ ref {M0195_EMVPdef}, яке здатне одночасно представляти як електричне, так і магнітне поля.

Також:

Для визначення електромагнітних полів, випромінюваних розподілом струму\widetilde{\bf J}, можна вирішити Equation\ ref {M0195_EPDEA},\widetilde{\bf A} а потім використовувати Equation\ ref {M0195_EMVPdef} для визначення\widetilde{\bf H} та подальшого визначення\widetilde{\bf E}.

Специфічні прийоми виконання цієї процедури — зокрема, для розв'язання диференціального рівняння — змінюються залежно від задачі, і розглядаються в інших розділах цієї книги.

Завершуємо цей розділ кількома коментарями щодо Equation\ ref {M0195_ELGC}. Це рівняння відоме як умова датчика Лоренца. Це обмеження не зовсім довільне, як випливає з попередньої деривації; скоріше, тут працює деяка глибока фізика. Зокрема, датчик Лоренца призводить до класичної інтерпретації\widetilde{V} як звичного скалярного електричного потенціалу, як зазначалося раніше в цьому розділі. (Для отримання додаткової інформації про цю ідею рекомендовані початкові пункти наведені в розділі «Додаткове читання» наприкінці цього розділу.)

На цьому етапі повинно бути зрозуміло, що електричне та магнітне поля є не просто зв'язаними величинами, а насправді двома аспектами одного і того ж поля; а саме магнітним векторним потенціалом. Насправді сучасна фізика (квантова механіка) дає потенціал магнітного вектора як опис «електромагнітної сили», єдиної сутності, яка становить одну з чотирьох основних сил, визнаних у сучасній фізиці; інші - гравітація, сильна ядерна сила та слабка ядерна сила. Для отримання додаткової інформації про цю концепцію чудовою відправною точкою є відео «Квантова інваріантність та походження стандартної моделі», на яке посилається в кінці цього розділу.

Додаткове читання:


  1. Нагадаємо, що при цьому немає втрати узагальненості, оскільки будь-яку іншу варіацію часової області розподілу струму можна представити за допомогою сум часових гармонічних розв'язків через перетворення Фур'є. ↩
  2. Контрприкладом може бути поширення через плазму, яка за визначенням складається з ненульового чистого заряду. ↩
  3. Примітка: У цьому виразі немає тильди. ↩