Loading [MathJax]/extensions/mml2jax.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
    • There are no locations to filter by
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 3 results
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0/%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0%3A_%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0_%D1%82%D0%B0_%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F_(OpenStax)/01%3A_%D0%9F%D0%B5%D1%80%D0%B5%D0%B4%D1%83%D0%BC%D0%BE%D0%B2%D0%B8/1.02%3A_%D0%9F%D0%BE%D0%BA%D0%B0%D0%B7%D0%BD%D0%B8%D0%BA%D0%B8_%D1%82%D0%B0_%D0%BD%D0%B0%D1%83%D0%BA%D0%BE%D0%B2%D1%96_%D0%BF%D0%BE%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%BD%D1%8F
    Математики, вчені та економісти зазвичай стикаються з дуже великими і дуже малими цифрами. Але може бути не очевидно, наскільки поширені такі цифри в повсякденному житті.
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0/%D0%9A%D0%B0%D1%80%D1%82%D0%B0%3A_%D0%9A%D0%BE%D0%BB%D0%B5%D0%B4%D0%B6_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B8_(OpenStax)/01%3A_%D0%9F%D0%B5%D1%80%D0%B5%D0%B4%D1%83%D0%BC%D0%BE%D0%B2%D0%B8/1.03%3A_%D0%9F%D0%BE%D0%BA%D0%B0%D0%B7%D0%BD%D0%B8%D0%BA%D0%B8_%D1%82%D0%B0_%D0%BD%D0%B0%D1%83%D0%BA%D0%BE%D0%B2%D1%96_%D0%BF%D0%BE%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%BD%D1%8F
    \[x^2\times x^5\times x^3=(x^2\times x^5) \times x^3=(x^{2+5})\times x^3=x^7\times x^3=x^{7+3}=x^{10} \nonumber\] c.\[\begin{align*} \left ( \dfrac{u^{-1}v}{v^{-1}} \right )^2 &= \dfrac{(u^{-1}v)^2}{(...\[x^2\times x^5\times x^3=(x^2\times x^5) \times x^3=(x^{2+5})\times x^3=x^7\times x^3=x^{7+3}=x^{10} \nonumber\] c.\[\begin{align*} \left ( \dfrac{u^{-1}v}{v^{-1}} \right )^2 &= \dfrac{(u^{-1}v)^2}{(v^{-1})^2} && \text{ The power of a quotient rule}\\ &= \dfrac{u^{-2}v^2}{v^{-2}} && \text{ The power of a product rule}\\ &= u^{-2}v^{2-(-2)} && \text{ The quotient rule}\\ &= u^{-2}v^4 && \text{ Simplify}\\ &= \dfrac{v^4}{u^2} && \text{ The negative exponent rule} \end{align*}\]
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%9F%D1%80%D0%B8%D0%BA%D0%BB%D0%B0%D0%B4%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%9E%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_%D0%B4%D0%BB%D1%8F_%D0%B1%D1%96%D0%B7%D0%BD%D0%B5%D1%81%D1%83_%D1%82%D0%B0_%D1%81%D0%BE%D1%86%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D0%B8%D1%85_%D0%BD%D0%B0%D1%83%D0%BA_%D0%9A%D0%BE%D1%80%D0%B5%D0%BA%D0%B2%D1%96%D0%B7%D0%B8%D1%82_%D0%A0%D0%BE%D0%B1%D0%BE%D1%87%D0%B8%D0%B9_%D0%B7%D0%BE%D1%88%D0%B8%D1%82_(Dominguez%2C_Martinez_%D1%82%D0%B0_Saykali)/05%3A_%D0%9F%D0%BE%D0%BA%D0%B0%D0%B7%D0%BD%D0%B8%D0%BA%D0%B8_%D1%82%D0%B0_%D0%B5%D0%BA%D1%81%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82%D0%B8_%D0%9F%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D0%B0/5.04%3A_%D0%9F%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D0%BE_%D0%BD%D1%83%D0%BB%D1%8C%D0%BE%D0%B2%D0%BE%D0%B3%D0%BE_%D0%BF%D0%BE%D0%BA%D0%B0%D0%B7%D0%BD%D0%B8%D0%BA%D0%B0
    У розділі 5.3 показник числа в чисельнику завжди був більше показника числа в знаменнику. У розділі 5.4 показник числа в чисельнику буде дорівнює показнику числа в знаменнику.