Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
LibreTexts - Ukrayinska

10.1: Серія живлення та функції

  • Edwin “Jed” Herman & Gilbert Strang
  • OpenStax

Цілі навчання
  • Визначте силові ряди та наведіть їх приклади.
  • Визначте радіус збіжності та інтервал збіжності степеневого ряду.
  • Використовуйте силовий ряд для представлення функції.

Силовий ряд - це тип серії з термінами, що включають змінну. Більш конкретно, якщо змінна єx, то всі терміни ряду мають на увазі повноваженняx. Як результат, степеневий ряд можна розглядати як нескінченний многочлен. Силові ряди використовуються для представлення загальних функцій, а також для визначення нових функцій. У цьому розділі ми визначаємо ряди потужності та покажемо, як визначити, коли силовий ряд сходиться і коли він розходиться. Ми також покажемо, як представляти певні функції за допомогою силових рядів.

Форма силового ряду

Серія форми

n=0cnxn=c0+c1x+c2x2+,

деx змінна, аcn коефіцієнти - константи, відомий як силовий ряд. Серіал

1+x+x2+=n=0xn

є прикладом силового ряду. Оскільки цей ряд є геометричним рядом із співвідношеннямr=|x|, ми знаємо, що він сходиться, якщо|x|<1 і розходиться, якщо|x|1.

Визначення10.1.1: Power Series

Серія форми

n=0cnxn=c0+c1x+c2x2+

це силовий ряд, зосереджений на серіїx=0. A форми

n=0cn(xa)n=c0+c1(xa)+c2(xa)2+

це силовий ряд, зосереджений наx=a.

Щоб зробити це визначення точним, ми обумовимо, щоx0=1 і(xa)0=1 навіть колиx=0 іx=a, відповідно.

Серіал

n=0xnn!=1+x+x22!+x33!+

і

n=0n!xn=1+x+2!x2+3!x3+

обидва силові ряди зосередженіx=0. на серії

n=0(x2)n(n+1)3n=1+x223+(x2)2332+(x2)3433+

це силовий ряд, зосереджений наx=2.

Конвергенція силового ряду

Оскільки терміни в ряді степенів включають зміннуx, ряд може сходитися для певних значеньx і розходитися для інших значеньx. Для степеневого рядуx=a, зосередженого на, значення ряду atx=a задається за допомогоюc0. Тому силовий ряд завжди сходиться в його центрі. Деякі силові ряди сходяться тільки при такому значенніx. Більшість силових рядів, однак, сходяться для більш ніж одного значенняx. У цьому випадку степеневий ряд або сходиться для всіх дійсних чисел,x або сходиться для всіхx у скінченному інтервалі. Наприклад, геометричний рядn=0xn сходиться для всіхx в інтервалі(1,1), але розходиться для всіхx поза цим інтервалом. Зараз ми підсумовуємо ці три можливості для загального енергетичного ряду.

Примітка10.1.1: Convergence of a Power Series

Розглянемо силовий рядn=0cn(xa)n. ряд задовольняє саме одному з наступних властивостей:

  1. Серія сходиться наx=a і розходиться для всіхxa.
  2. Ряд сходиться для всіх дійсних чиселx.
  3. Існує дійсне числоR>0 таке, що ряд сходиться якщо|xa|<R і розходиться якщо|xa|>R. При значенняхx, де |x−a|=R, ряд може сходитися або розходитися.
Доказ

Припустимо, що силовий ряд зосереджений наa=0. (Для серії, зосередженої на значенні, відмінному від нуля, результат випливає, дозволяючиy=xa та враховуючи ряд

n=1cnyn.

Треба спочатку довести наступний факт:

Якщо існує дійсне числоd0 таке, щоn=0cndn сходиться, то рядn=0cnxn сходиться абсолютно для всіхx таких, що|x|<|d|.

Оскількиn=0cndn сходиться, тоcndn0 n-ий термін бувn. Тому існує ціле числоN таке, що|cndn|1 для всіхnN. Writing

|cnxn|=|cndn||xd|n,

робимо висновок, що для всіх N≥n

|cnxn||xd|n.

Серіал

n=N|xd|n

це геометричний ряд, який сходиться, якщо|xd|<1. Тому, шляхом тесту порівняння, ми робимо висновок, щоn=Ncnxn також сходиться для|x|<|d|. Оскільки ми можемо додати скінченну кількість членів до збіжному ряду, ми робимо висновок, щоn=0cnxn сходиться для|x|<|d|.

За допомогою цього результату ми тепер можемо довести теорему. Розглянемо серію

n=0anxn

і нехайS буде набір дійсних чисел, для яких серія сходиться. Припустимо, що набірS=0. Тоді серія потрапляє під випадок i.

Припустимо, щоS множина - це сукупність всіх дійсних чисел. Потім ряд потрапляє під випадок ii. Припустимо, щоS0 і неS є безліччю дійсних чисел. Тоді існує дійсне числоx0 таке, що ряд не сходиться. Таким чином, серія не може сходитися ні для одногоx такого, що|x|>|x|. Тому множинаS повинна бути обмеженою множиною, а значить, вона повинна мати найменшу верхню межу. (Цей факт випливає з найменш верхньої межі властивості для дійсних чисел, який виходить за рамки цього тексту і висвітлюється в реальних курсах аналізу.) Назвіть цю найменшу верхню межуR. З тих пірS0, числоR>0. Тому ряд сходиться для всіхx таких, що|x|<R, і ряд потрапляє в case iii.

Якщо рядn=0cn(xa)n потрапляє в випадок iii. Note, то ряд сходиться для всіхx таких, що|xa|<R для деякихR>0, і розходиться для всіхx таких що|xa|>R. Ряд може сходитися або розходитися при значенняхx де|xa|=R. Набір значень,x для якихn=0cn(xa)n сходиться ряд, відомий як інтервал збіжності. Так як ряд розходиться для всіх значеньx де|xa|>R, довжина інтервалу дорівнює2R, а значить, радіус інтервалу дорівнюєR. ЗначенняR називається радіусом збіжності. Наприклад, оскільки рядn=0xn сходиться для всіх значеньx в інтервалі(1,1) і розходиться для всіх значеньx таким чином|x|1, інтервал збіжності цього ряду дорівнює(1,1). Так як довжина інтервалу дорівнює2, радіус збіжності дорівнює1.

Визначення: радіус збіжності

Розглянемо силові рядиn=0cn(xa)n. Безліч дійсних чиселx, де сходиться ряд, є інтервалом збіжності. Якщо існує дійсне число,R>0 таке, що ряд сходиться для|xa|<R і розходиться для|xa|>R, тодіR радіус збіжності. Якщо ряд сходиться тільки наx=a, ми говоримо радіус збіжності єR=0. Якщо ряд сходиться для всіх дійсних чиселx, ми говоримо, що радіус збіжності дорівнюєR= (рис.10.1.1).

Ця цифра має три числові лінії, кожна з яких позначена x. Посередині кожної цифрової лінії знаходиться точка з позначкою a. Перша цифра має «розходиться» по всій лінії ліворуч від a і «розходиться» над лінією праворуч від a. У самій точці a вона позначена як «сходиться». Другий числовий рядок має «сходиться», позначені для всього рядка. Третя цифра має точки з позначками A-r, a та A+r. Ліворуч від A-r числовий рядок позначено «розходиться». Між A-r і A+r числовий рядок позначений «сходиться», а праворуч від A+r числовий рядок позначено «розходиться».
Рисунок10.1.1: Для послідовногоn=0cn(xa)n графіка (а) показує радіус збіжності вR=0, графік (b) показує радіус збіжності вR=, а графік (c) показує радіус збіжності вR. Для графа (c) зауважимо, що ряди можуть сходитися або не сходитися в кінцевих точкахx=a+R іx=aR.

Щоб визначити інтервал збіжності для степеневого ряду, ми зазвичай застосовуємо тест коефіцієнта. У прикладі10.1.1 ми показуємо три різні можливості, проілюстровані на малюнку10.1.1.

Приклад10.1.1: Finding the Interval and Radius of Convergence

Для кожного з наступних рядів знайдіть інтервал і радіус збіжності.

  1. n=0xnn!
  2. n=0n!xn
  3. n=0(x2)n(n+1)3n

Рішення

а. щоб перевірити на збіжність, застосуйте тест коефіцієнта. У нас є

\ [\ почати {вирівнювати*} ρ &=\ lim_ {n→∞}\ ліворуч |\ dfrac {\ dfrac {x^ {n+1}} {(n+1)!}} {\ dfrac {x^n} {n!}} \ праворуч |\\ [4pt]
&=\ lim_ {n → ∞}\ ліворуч |\ dfrac {x^ {n+1}} {(n+1)!} ⋅\ фрак {n!} {x^n}\ праворуч |\\ [4pt]
&=\ lim_ {n → ∞}\ ліворуч |\ dfrac {x^ {n+1}} {(n+1) ⋅n!} ⋅\ фрак {n!} {x^n}\ праворуч |\\ [4pt]
&=\ lim_ {n → ∞}\ ліворуч |\ dfrac {x} {n+1}\ праворуч |\\ [4pt]
&=|x|\ lim_ {n →∞}\ dfrac {1} {n+1}\\ [4pt]
&=0<1\ кінець {вирівня*}\]

для всіх значеньx. Тому ряд сходиться для всіх дійсних чиселx. Інтервал збіжності дорівнює,(,) а радіус збіжності дорівнюєR=.

б Нанесіть тест на співвідношення. Боx0, ми бачимо, що

\ [\ почати {вирівнювати*} ρ &=\ lim_ {n→∞}\ ліворуч |\ dfrac {(n+1)! x^ {n+1}} {n! x^n}\ праворуч |\\ [4пт]
&=\ lim_ {n→∞} | (n+1) x |\\ [4pt]
&=|x|\ lim_ {n→∞} (n+1)\\ [4pt]
&=∞. \ end {вирівнювати*}\]

Тому серія розходиться у всіхx0. Так як ряд по центруx=0, він повинен сходитися там, тому ряд сходиться тільки дляx0. Інтервал збіжності - одиничне значення,x=0 а радіус збіжності -R=0.

c Для того, щоб застосувати тест співвідношення, розглянемо

\ [\ почати {вирівнювати*} ρ &=\ lim_ {n→∞}\ ліво|\ dfrac {\ dfrac {(x−2) ^ {n+1}} {(n+2) 3^ {n+1}} {\ dfrac {(x−2) ^n} {(n+1) 3^n}}\ право|\\ [4пт]
&=\ lim _ {n→∞}\ ліворуч |\ dfrac {(x−2) ^ {n+1}} {(n+2) 3^ {n+1}} ⋅\ dfrac {(n+1) 3^n} {(x−2) ^n}\ праворуч |\\ [4pt]
&=\ lim_ {n→∞}\ ліво|\ dfrac {(x−2) (n+1)} {3 (n+2)}\ праворуч |\\ [4 pt]
&=\ dfrac {|x−2|} {3}. \ end {вирівнювати*}\]

Співвідношенняρ<1 if|x2|<3. Так як|x2|<3 має3<x2<3, на увазі, що ряд сходиться абсолютно якщо1<x<5. Співвідношенняρ>1 if|x2|>3. Тому ряд розходиться, якщоx<1 абоx>5. Тест на співвідношення є непереконливим, якщоρ=1. Співвідношенняρ=1 якщо і тільки якщоx=1 абоx=5. Нам потрібно перевірити ці значенняx окремо. Дляx=1, серія дається

n=0(1)nn+1=112+1314+.

Так як це змінний гармонійний ряд, то він сходиться. Таким чином, ряд сходиться приx=1. Дляx=5, серія дається

n=01n+1=1+12+13+14+.

Це гармонійний ряд, який розходиться. Тому силовий ряд розходиться наx=5. Зроблено висновок, що інтервал збіжності дорівнює[1,5) і радіус збіжності дорівнюєR=3.

Вправа10.1.1

Знайти інтервал і радіус збіжності для ряду

n=1xnn.

Підказка

Застосуйте тест співвідношення, щоб перевірити абсолютну збіжність.

Відповідь

Інтервал збіжності -[1,1). Радіус збіжності дорівнюєR=1.

Представлення функцій як енергетичних рядів

Можливість представляти функцію за допомогою «нескінченного многочлена» є потужним інструментом. Поліноміальні функції - це найпростіші функції для аналізу, оскільки вони включають лише основні арифметичні операції додавання, віднімання, множення та ділення. Якщо ми можемо представити складну функцію нескінченним многочленом, ми можемо використовувати поліноміальне подання для її диференціації або інтеграції. Крім того, ми можемо використовувати усічений варіант поліноміального виразу для наближення значень функції. Отже, питання в тому, коли ми можемо представляти функцію силовим рядом?

Розглянемо ще раз геометричні ряди

1+x+x2+x3+=n=0xn.

Нагадаємо, що геометричний ряд

a+ar+ar2+ar3+

сходиться, якщо і тільки якщо|r|<1. У цьому випадку він сходиться доa1r. Тому якщо|x|<1, ряд в прикладі10.1.1 сходиться до11x і пишемо

1+x+x2+x3+=11xfor|x|<1.

В результаті ми можемо представляти функціюf(x)=11x силовим рядом

1+x+x2+x3+when|x|<1.

Тепер ми покажемо графічно, як цей ряд забезпечує уявлення для функції,f(x)=11x порівнюючи графікf з графіками декількох часткових сум цього нескінченного ряду.

Приклад10.1.2: Graphing a Function and Partial Sums of its Power Series

Намалюйте графікf(x)=11x і графіки відповідних часткових сумSN(x)=Nn=0xn дляN=2,4,6 інтервалу(1,1). Коментуйте наближенняSN у міруN збільшення.

Рішення

З графіка на малюнку ви бачите, що зіN збільшеннямSN стає кращим наближенням дляf(x)=11x дляx в інтервалі(1,1).

Ця цифра є графіком y = 1/ (1-x), який є зростаючою кривою з вертикальною асимптотою на 1. Також на цьому графіку наведено три часткові суми функції, S sub 6, S sub 4 та S sub 2. Ці криві, по порядку, поступово стають більш плоскі.
Рисунок10.1.2: Графік показує функцію та три її наближення частковими сумами степеневого ряду.
Вправа10.1.2

Намалюйте графікf(x)=11x2 та відповідні часткові сумиSN(x)=Nn=0x2n дляN=2,4,6 на інтервалі(1,1).

Підказка
SN(x)=1+x2++x2N=1x2(N+1)1x2
Відповідь

Ця цифра є графіком y = 1/ (1-x^2), який являє собою криву, увігнуту вгору, симетричну щодо осі y. Також на цьому графіку наведено три часткові суми функції, S sub 6, S sub 4 та S sub 2. Ці криві, по порядку, поступово стають більш плоскі.

Далі ми розглянемо функції, що містять вираз, подібний до суми геометричного ряду, і показуємо, як представляти ці функції за допомогою степеневих рядів.

Приклад10.1.3: Representing a Function with a Power Series

Використовуйте силовий ряд, щоб представити кожну з наступних функційf. Знайти інтервал збіжності.

  1. f(x)=11+x3
  2. f(x)=x24x2

Рішення

a Ви повинні розпізнати цю функціюf як суму геометричного ряду, тому що

11+x3=11(x3).

Використовуючи той факт, що, for|r|<1,a1r - сума геометричного ряду

n=0arn=a+ar+ar2+,

ми бачимо, що для|x3|<1,

11+x3=11(x3)=n=0(x3)n=1x3+x6x9+.

Оскільки цей ряд сходиться якщо і тільки якщо|x3|<1, інтервал збіжності є(1,1), і ми маємо

11+x3=1x3+x6x9+for|x|<1.

б Ця функція не є точною формою суми геометричного ряду. Однак за допомогою невеликої алгебраїчної маніпуляції ми можемо віднести f до геометричного ряду. Факторингом 4 з двох членів в знаменнику отримаємо

x24x2=x24(1x24)=x24(1(x2)2).

Тому ми маємо

\ [\ почати {вирівнювати*}\ dfrac {x^2} {4−x^2} &=\ dfrac {x^2} {4 (1 − (\ dfrac {x} {2}) ^2) ^2)}\\ [4pt]
&=\ dfrac {\ dfrac {x^2} {4}} {1− (\ dfrac {x} {2}) ^2}\\ [4pt]
&=\ сума_ {n=0} ^∞\ dfrac {x^2} {4} (\ dfrac {x} {2}) ^ {2n}. \ end {вирівнювати*}\]

Ряд сходиться до тих пір, поки|(x2)2|<1 (зверніть увагу, що коли|(x2)2|=1 ряд не сходиться). Вирішуючи цю нерівність, робимо висновок, що інтервал збіжності дорівнює(2,2) і

\ [\ почати {вирівнювати*}\ dfrac {x^2} {4−x^2} &=\ сума {n=0} ^∞\ dfrac {x^ {2n+2}} {4^ {n+1}}\ [4pt]
&=\ dfrac {x^2} {4} +\ dfrac {x^4} {4^2} +\ dfrac {x^6} {4^3} +\ ldots\ кінець {align*}\]

для|x|<2.

Вправа10.1.3

Уявіть функціюf(x)=x32x за допомогою степеневого ряду і знайдіть інтервал збіжності.

Підказка

Перепишіть f в формуf(x)=g(x)1h(x) для деяких функційg іh.

Відповідь

n=0xn+32n+1з інтервалом сходження(2,2)

В інших розділах цієї глави ми покажемо способи отримання уявлень рядів потужності для багатьох інших функцій, а також як ми можемо використовувати ці уявлення для оцінки, диференціації та інтеграції різних функцій.

Ключові поняття

  • Для силового ряду, зосередженого наx=a, утримується одна з наступних трьох властивостей:
    • i. силовий ряд сходиться тільки приx=a. В даному випадку скажемо, що радіус збіжності єR=0.
    • II. Силовий ряд сходиться для всіх дійсних чиселx. В даному випадку скажемо, що радіус збіжності єR=.
    • III. Існує дійсне число R таке, що ряд сходиться для|xa|<R і розходиться для|xa|>R. При цьому радіус збіжності дорівнюєR.
  • Якщо силовий ряд сходиться на скінченному інтервалі, ряд може сходитися або не сходитися в кінцевих точках.
  • Тест коефіцієнта часто може бути використаний для визначення радіуса збіжності.
  • Геометричний рядn=0xn=11x для|x|<1 дозволяє нам представляти певні функції за допомогою геометричних рядів.

Ключові рівняння

  • Потужність серії в центріx=0

n=0cnxn=c0+c1x+c2x2+n

  • Потужність серії в центріx=a

n=0cn(xa)n=c0+c1(xa)+c2(xa)2+

Глосарій

інтервал зближення
множина дійсних чисел,x для яких зближується степеневий ряд
силовий ряд
серія формиn=0cnxn - це силовий ряд з центромx=0; серія формиn=0cn(xa)n є силовий ряд, зосереджений наx=a
радіус збіжності
якщо існує дійсне числоR>0 таке, що енергетичний ряд з центромx=a сходиться для|xa|<R і розходиться для|xa|>R, тоR є радіусом збіжності; якщо ряди потужності сходяться тільки вx=a, радіус збіжності єR=0; якщо потужність ряд сходиться для всіх дійсних чиселx, радіус збіжності дорівнюєR=