6: Лінійні карти
- Page ID
- 63332
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Як обговорювалося в главі 1, однією з головних цілей Лінійної алгебри є характеристика розв'язків системи\(m \) linear equations in \(n \) unknowns \( x_1, \ldots, x_n \),
\ [\ begin {рівняння*}
\ ліворуч.
\ begin {масив} {rl}
a_ {11} x_1 +\ cdots + a_ {1n} x_n &= b_1\
\ vdots\ qquad\ vdots\ qquad\ vdots\\
a_ {m1} x_1 +\ cdots + a_ {mn} x_n &= b_m
\ кінець {масив}
\ право\},
\ end {рівняння*}\]
where each of the coefficients \(a_{ij} \) and \(b_i \) is in \(\mathbb{F} \). Linear maps and their properties give us insight into the characteristics of solutions to linear systems.