1.S: Цілі цифри (резюме)
- Page ID
- 57740
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Ключові умови
координувати | Число в парі з точкою на числовій лінії. |
підрахунок чисел | Підрахувальні числа - це цифри 1, 2, 3,... |
різниця | Результат віднімання двох і більше чисел. |
дивідендів | Число, яке ділиться при діленні двох чисел. |
дільник | Число, що ділить дивіденд при діленні двох чисел. |
номер рядка | Для візуалізації чисел використовується числовий рядок. Числа на числовому рядку стають більшими, оскільки вони йдуть зліва направо, і менше, коли вони йдуть справа наліво. |
походження | Точка з позначкою 0 на числовому рядку. |
місце вартість система | Наша система числення називається системою значень місця, тому що значення цифри залежить від її положення, або місця, в числі. |
продукт | Результат множення двох і більше чисел. |
частка | Результат ділення двох чисел. |
округлення | Процес наближення числа. |
сума | Результат додавання двох і більше чисел. |
цілих чисел | Цілими числами є числа 0, 1, 2, 3,... |
Ключові концепції
1.1 - Вступ до цілих чисел
- Назвіть ціле число прописом.
- Починаючи з цифри зліва, назвіть число в кожному періоді, а потім - назва періоду. Не включайте назву періоду для них.
- Використовуйте коми в числі, щоб відокремити періоди.
- Використовуйте значення місця, щоб записати ціле число.
- Визначте слова, які вказують на періоди. (Пам'ятайте, що ті період ніколи не названий.)
- Намалюйте три заготовки, щоб вказати кількість місць, необхідних в кожному періоді.
- Назвіть номер у кожному періоді та розмістіть цифри у правильній позиції значення місця.
- Округляйте ціле число до певного значення місця.
- Знайдіть задане значення місця. Всі цифри зліва від цього місця не змінюються.
- Підкресліть цифру праворуч від заданого значення місця.
- Визначте, чи ця цифра більше або дорівнює 5. Якщо так — додайте 1 до цифри у вказаному значенні місця. Якщо ні — не змінюйте цифру в заданому місці значення.
- Замініть всі цифри праворуч від заданого значення місця нулями.
1.2 - Додати цілі числа
• Додавання позначення: Щоб описати додавання, ми можемо використовувати символи та слова.
Операція | Позначення | Вираз | Читати як | Результат |
---|---|---|---|---|
Додавання | + | 3 + 4 | три плюс чотири | сума 3 і 4 |
- Ідентифікаційна властивість додавання: Сума будь-якого числа a та 0 - це число. $$\ begin {спліт} a + 0 &= a\\ 0 + a &= a\ кінець {спліт} $$
- Комутативна властивість додавання: Зміна порядку доповнень a та b не змінює їх суму. $а+ б = б + а\ ldotp$$
- Додайте цілі числа.
- Запишіть числа так, щоб кожне місце значення вибудовувалося вертикально.
- Додайте цифри в кожному місці значення. Працюйте справа наліво, починаючи з тих місць. Якщо сума у значенні місця більше 9, перенесіть на наступне місце значення.
- Продовжуйте додавати значення кожного місця справа наліво, додаючи кожне значення місця та переносячи, якщо потрібно.
1.3 - Відніміть цілі числа
Операція | Позначення | Вираз | Читати як | Результат |
---|---|---|---|---|
Віднімання | - | 7 - 3 | вісім мінус три | різниця 7 і 3 |
- Відніміть цілі числа.
- Запишіть числа так, щоб кожне місце значення вибудовувалося вертикально.
- Відніміть цифри в кожному місці значення. Працюйте справа наліво, починаючи з тих місць. Якщо цифра зверху менше, ніж цифра нижче, запозичуйте в міру необхідності.
- Продовжуйте віднімати кожне значення місця справа наліво, запозичуючи при необхідності.
- Перевірте шляхом додавання.
1.4 - Множення цілих чисел
Операція | Позначення | Вираз | Читати як | Результат |
---|---|---|---|---|
множення | × | 3 × 8 | три рази вісім | продукт 3 і 8 |
• | 3 • 8 | |||
() | 3 (8) |
- Властивість множення нуля: добуток будь-якого числа і 0 дорівнює 0. $$\ почати {спліт} a\ cdot 0 &= 0\\ 0\ cdot a &= 0\ кінець {спліт} $$
- Властивість ідентичності множення: добуток будь-якого числа і 1 - це число. $$\ begin {спліт} 1\ cdot a &= a\ a\ cdot 1 &= a\ кінець {спліт} $$
- Комутативна властивість множення: Зміна порядку факторів не змінює їх добутку. $а\ точка б = б\ точка а\ ldotp$$
- Помножте два цілих числа, щоб знайти твір.
- Запишіть числа так, щоб кожне місце значення вибудовувалося вертикально.
- Помножте цифри в кожному місці значення.
- Працюйте справа наліво, починаючи з тих, що розміщуються в нижньому номері.
- Помножте нижнє число на цифру одиниць у верхньому числі, потім на цифру десятків і так далі.
- Якщо товар в місці значення більше 9, перенесіть на наступне місце значення.
- Напишіть часткові вироби, вибудовуючи цифри в значення місця з цифрами вище. Повторіть для десятків місце в нижньому числі, сотні місце і так далі.
- Вставте нуль як заповнювач з кожним додатковим частковим твором.
- Додайте часткові продукти.
1.5 - Розділіть цілі числа
Операція | Позначення | Вираз | Читати як | Результат |
---|---|---|---|---|
Відділ | ÷ | 12 ÷ 4 | Дванадцять розділених на чотири | частка 12 і 4 |
\(\dfrac{a}{b}\) | \(\dfrac{12}{4}\) | |||
\(b \overline{) a}\) | \(4 \overline{\smash{)}12}\) | |||
а/б | 12/4 |
- Властивості поділу одного:
- Будь-яке число (крім 0), розділене саме по собі, дорівнює одиниці. $а\ дів а = 1$$
- Будь-яке число, розділене на одиницю, є однаковим числом. $$а\ дів 1 = а$$
- Властивості поділу нуля:
- Нуль ділиться на будь-яке число 0. $$0\ div a = 0 $$
- Ділення числа на нуль не визначено. $$a\ div 0 = невизначено$$
- Розділіть цілі числа.
- Ділимо першу цифру дивіденду на дільник. Якщо дільник більше першої цифри дивіденда, розділіть перші дві цифри дивіденду на дільник і так далі.
- Напишіть коефіцієнт вище дивідендів.
- Помножте частку на дільник і запишіть добуток під дивідендом.
- Відніміть цей продукт із дивідендів.
- Збиваємо наступну цифру дивідендів.
- Повторюйте з кроку 1, поки не буде більше цифр у дивіденді, щоб збити.
- Перевірте, множивши частку на дільник.