Skip to main content
LibreTexts - Ukrayinska

12.3: Векторні ідентичності

  • Page ID
    30870
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Алгебраїчні ідентичності

    \[ \begin{align} \mathbf { A } \cdot ( \mathbf { B } \times \mathbf { C } ) &= \mathbf { B } \cdot ( \mathbf { C } \times \mathbf { A } ) = \mathbf { C } \cdot ( \mathbf { A } \times \mathbf { B } ) \\[5pt] \mathbf { A } \times ( \mathbf { B } \times \mathbf { C } ) &= \mathbf { B } ( \mathbf { A } \cdot \mathbf { C } ) - \mathbf { C } ( \mathbf { A } \cdot \mathbf { B } ) \end{align} \nonumber \]

    Теорема про розбіжність

    Враховується замкнута поверхня, що\({\mathcal S}\) охоплює суміжний об'єм\({\mathcal V}\),\[\int_{\mathcal V} \left( \nabla \cdot {\bf A} \right) dv = \oint_{\mathcal S} {\bf A}\cdot d{\bf s} \nonumber \] де\(d{\bf s}\) поверхня нормаль вказує на об'єм.

    Теорема Стокса

    Задана замкнута крива, що\({\mathcal C}\) обмежує суміжну поверхню\({\mathcal S}\),\[\int_{\mathcal S} \left( \nabla \times {\bf A} \right) \cdot d{\bf s} = \oint_{\mathcal C} {\bf A}\cdot d{\bf l} \nonumber \] де напрямок нормальної поверхні\(d{\bf s}\) пов'язане з напрямком інтеграції вздовж\({\mathcal C}\) «правилом правої руки».