Search
- Filter Results
- Location
- There are no locations to filter by
- Classification
- Include attachments
- https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/04%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.03%3A_%D0%92%D1%96%D0%B4%D0%BF%D0%BE%D0%B2%D1%96%D0%B4%D1%96_%D0%BD%D0%B0_%D0%B2%D0%BF%D1%80%D0%B0%D0%B2%D0%B8
- https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/04%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.01%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.1.06%3A_3-D_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B8_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82\[\begin{align*} \rho&=\text{ distance from }(0,0,0)\text{ to }(x,y,z)\\ \vec{a}rphi&=\text{ angle between the $z$ axis and the line joining $(x,y,z)$ to $(0,0,0)$}\\ \theta&=\text{ angle between the ...ρ= distance from (0,0,0) to (x,y,z)→arphi= angle between the z axis and the line joining (x,y,z) to (0,0,0)θ= angle between the x axis and the line joining (x,y,0) to (0,0,0)
- https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/04%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.04%3A_%D0%A0%D1%96%D1%88%D0%B5%D0%BD%D0%BD%D1%8F_%D0%B2%D0%BF%D1%80%D0%B0%D0%B2
- https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/04%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.01%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.1.08%3A_%D0%9A%D0%BE%D0%BD%D1%96%D1%87%D0%BD%D1%96_%D0%BF%D0%B5%D1%80%D0%B5%D1%80%D1%96%D0%B7%D0%B8_%D1%82%D0%B0_%D1%87%D0%BE%D1%82%D0%B8%D1%80%D0%B8%D0%BA%D1%83%D1%82%D0%BD%D1%96_%D0%BF%D0%BE%D0%B2%D0%B5%D1%80%D1%85%D0%BD%D1%96Конічний перетин - це крива перетину конуса і площини, яка не проходить через вершину конуса.
- https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/01%3A_%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%B8_%D1%82%D0%B0_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F_%D1%83_%D0%B4%D0%B2%D0%BE%D1%85_%D1%82%D0%B0_%D1%82%D1%80%D1%8C%D0%BE%D1%85_%D0%B2%D0%B8%D0%BC%D1%96%D1%80%D0%B0%D1%85/1.05%3A_%D0%A0%D1%96%D0%B2%D0%BD%D1%8F%D0%BD%D0%BD%D1%8F_%D0%BB%D1%96%D0%BD%D1%96%D0%B9_%D0%B2_3dТак само, як і у двох вимірах, лінія в трьох вимірах може бути вказана, давши одну точку(x0,y0,z0) на лінії та один вектор, напрямокd=⟨dx,dy,dz⟩ яко...Так само, як і у двох вимірах, лінія в трьох вимірах може бути вказана, давши одну точку(x0,y0,z0) на лінії та один вектор, напрямокd=⟨dx,dy,dz⟩ якого паралельний напрямку лінії.
- https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/01%3A_%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%B8_%D1%82%D0%B0_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F_%D1%83_%D0%B4%D0%B2%D0%BE%D1%85_%D1%82%D0%B0_%D1%82%D1%80%D1%8C%D0%BE%D1%85_%D0%B2%D0%B8%D0%BC%D1%96%D1%80%D0%B0%D1%85/1.01%3A_%D0%9E%D0%BA%D1%83%D0%BB%D1%8F%D1%80%D0%B8Кожна точка в двох вимірах може бути позначена двома координатами,(x,y) які визначають положення точки в деяких одиницях відносно деяких осей, як на малюнку нижче.
- https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/zz%3A_%D0%9D%D0%B0%D0%B7%D0%B0%D0%B4_%D0%9C%D0%B0%D1%82%D0%B5%D1%80%D1%96%D1%8F
- https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/02%3A_%D0%A7%D0%B0%D1%81%D1%82%D0%BA%D0%BE%D0%B2%D1%96_%D0%BF%D0%BE%D1%85%D1%96%D0%B4%D0%BD%D1%96/2.09%3A_%D0%9C%D0%B0%D0%BA%D1%81%D0%B8%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B5_%D1%82%D0%B0_%D0%BC%D1%96%D0%BD%D1%96%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B5_%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%BD%D1%8FОднією з основних тем в курсах обчислення однієї змінної є знаходження максимумів і мінімумів функцій однієї змінної. Тепер ми будемо розширювати цю дискусію на функції більш ніж однієї змінної.
- https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/03%3A_%D0%9A%D1%96%D0%BB%D1%8C%D0%BA%D0%B0_%D1%96%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%96%D0%B2In your previous calculus courses you defined and worked with single variable integrals, like ∫baf(x) dx. In this chapter, we define and work with multivariable integrals,...In your previous calculus courses you defined and worked with single variable integrals, like ∫baf(x) dx. In this chapter, we define and work with multivariable integrals, like ∬ and \iiint_{V} f(x,y,z)\ \mathrm{d}{x}\,\mathrm{d}{y}\,\mathrm{d}{z}\text{.} We start with two variable integrals.
- https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/04%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.01%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.1.05%3A_%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D1%8F_%D1%80%D0%BE%D0%B7%D1%88%D0%B8%D1%80%D0%B5%D0%BD%D1%8C_%D0%A2%D0%B5%D0%B9%D0%BB%D0%BE%D1%80%D0%B0\[\begin{align*} e^x&=\sum_{n=0}^\infty \dfrac{1}{n!}x^n &&\text{for } -\infty \lt x \lt \infty\\ &=1+x+\dfrac{1}{2}x^2+\dfrac{1}{3!}x^3+\cdots+\dfrac{1}{n!}x^n+\cdots\\ \sin x&=\sum_{n=0}^\infty\dfra...\[\begin{align*} e^x&=\sum_{n=0}^\infty \dfrac{1}{n!}x^n &&\text{for } -\infty \lt x \lt \infty\\ &=1+x+\dfrac{1}{2}x^2+\dfrac{1}{3!}x^3+\cdots+\dfrac{1}{n!}x^n+\cdots\\ \sin x&=\sum_{n=0}^\infty\dfrac{(-1)^n}{(2n+1)!}x^{2n+1} &&\text{for } -\infty \lt x \lt \infty\\ &=x-\dfrac{1}{3!}x^3+\dfrac{1}{5!}x^5-\cdots +\dfrac{(-1)^n}{(2n+1)!}x^{2n+1}+\cdots\\ \cos x&=\sum_{n=0}^\infty\dfrac{(-1)^n}{(2n)!}x^{2n} &&\text{for } -\infty \lt x \lt \infty\\ &=1-\dfrac{1}{2!}x^2+\dfrac{1}{4!}x^4-\cdots +\dfr…
- https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)Цей підручник охоплює багатоваріантні обчислення. Є глави про вектори та геометрію у 2 та 3 вимірах, часткові похідні та багатозмінні інтеграли.