Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
    • There are no locations to filter by
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 53 results
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/04%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.03%3A_%D0%92%D1%96%D0%B4%D0%BF%D0%BE%D0%B2%D1%96%D0%B4%D1%96_%D0%BD%D0%B0_%D0%B2%D0%BF%D1%80%D0%B0%D0%B2%D0%B8
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/04%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.01%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.1.06%3A_3-D_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B8_%D0%BA%D0%BE%D0%BE%D1%80%D0%B4%D0%B8%D0%BD%D0%B0%D1%82
    \[\begin{align*} \rho&=\text{ distance from }(0,0,0)\text{ to }(x,y,z)\\ \vec{a}rphi&=\text{ angle between the $z$ axis and the line joining $(x,y,z)$ to $(0,0,0)$}\\ \theta&=\text{ angle between the ...ρ= distance from (0,0,0) to (x,y,z)arphi= angle between the z axis and the line joining (x,y,z) to (0,0,0)θ= angle between the x axis and the line joining (x,y,0) to (0,0,0)
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/04%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.04%3A_%D0%A0%D1%96%D1%88%D0%B5%D0%BD%D0%BD%D1%8F_%D0%B2%D0%BF%D1%80%D0%B0%D0%B2
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/04%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.01%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.1.08%3A_%D0%9A%D0%BE%D0%BD%D1%96%D1%87%D0%BD%D1%96_%D0%BF%D0%B5%D1%80%D0%B5%D1%80%D1%96%D0%B7%D0%B8_%D1%82%D0%B0_%D1%87%D0%BE%D1%82%D0%B8%D1%80%D0%B8%D0%BA%D1%83%D1%82%D0%BD%D1%96_%D0%BF%D0%BE%D0%B2%D0%B5%D1%80%D1%85%D0%BD%D1%96
    Конічний перетин - це крива перетину конуса і площини, яка не проходить через вершину конуса.
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/01%3A_%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%B8_%D1%82%D0%B0_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F_%D1%83_%D0%B4%D0%B2%D0%BE%D1%85_%D1%82%D0%B0_%D1%82%D1%80%D1%8C%D0%BE%D1%85_%D0%B2%D0%B8%D0%BC%D1%96%D1%80%D0%B0%D1%85/1.05%3A_%D0%A0%D1%96%D0%B2%D0%BD%D1%8F%D0%BD%D0%BD%D1%8F_%D0%BB%D1%96%D0%BD%D1%96%D0%B9_%D0%B2_3d
    Так само, як і у двох вимірах, лінія в трьох вимірах може бути вказана, давши одну точку(x0,y0,z0) на лінії та один вектор, напрямокd=dx,dy,dz яко...Так само, як і у двох вимірах, лінія в трьох вимірах може бути вказана, давши одну точку(x0,y0,z0) на лінії та один вектор, напрямокd=dx,dy,dz якого паралельний напрямку лінії.
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/01%3A_%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%B8_%D1%82%D0%B0_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F_%D1%83_%D0%B4%D0%B2%D0%BE%D1%85_%D1%82%D0%B0_%D1%82%D1%80%D1%8C%D0%BE%D1%85_%D0%B2%D0%B8%D0%BC%D1%96%D1%80%D0%B0%D1%85/1.01%3A_%D0%9E%D0%BA%D1%83%D0%BB%D1%8F%D1%80%D0%B8
    Кожна точка в двох вимірах може бути позначена двома координатами,(x,y) які визначають положення точки в деяких одиницях відносно деяких осей, як на малюнку нижче.
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/zz%3A_%D0%9D%D0%B0%D0%B7%D0%B0%D0%B4_%D0%9C%D0%B0%D1%82%D0%B5%D1%80%D1%96%D1%8F
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/02%3A_%D0%A7%D0%B0%D1%81%D1%82%D0%BA%D0%BE%D0%B2%D1%96_%D0%BF%D0%BE%D1%85%D1%96%D0%B4%D0%BD%D1%96/2.09%3A_%D0%9C%D0%B0%D0%BA%D1%81%D0%B8%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B5_%D1%82%D0%B0_%D0%BC%D1%96%D0%BD%D1%96%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B5_%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%BD%D1%8F
    Однією з основних тем в курсах обчислення однієї змінної є знаходження максимумів і мінімумів функцій однієї змінної. Тепер ми будемо розширювати цю дискусію на функції більш ніж однієї змінної.
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/03%3A_%D0%9A%D1%96%D0%BB%D1%8C%D0%BA%D0%B0_%D1%96%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%96%D0%B2
    In your previous calculus courses you defined and worked with single variable integrals, like baf(x) dx. In this chapter, we define and work with multivariable integrals,...In your previous calculus courses you defined and worked with single variable integrals, like baf(x) dx. In this chapter, we define and work with multivariable integrals, like and \iiint_{V} f(x,y,z)\ \mathrm{d}{x}\,\mathrm{d}{y}\,\mathrm{d}{z}\text{.} We start with two variable integrals.
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)/04%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.01%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/4.1.05%3A_%D0%A2%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D1%8F_%D1%80%D0%BE%D0%B7%D1%88%D0%B8%D1%80%D0%B5%D0%BD%D1%8C_%D0%A2%D0%B5%D0%B9%D0%BB%D0%BE%D1%80%D0%B0
    \[\begin{align*} e^x&=\sum_{n=0}^\infty \dfrac{1}{n!}x^n &&\text{for } -\infty \lt x \lt \infty\\ &=1+x+\dfrac{1}{2}x^2+\dfrac{1}{3!}x^3+\cdots+\dfrac{1}{n!}x^n+\cdots\\ \sin x&=\sum_{n=0}^\infty\dfra...\[\begin{align*} e^x&=\sum_{n=0}^\infty \dfrac{1}{n!}x^n &&\text{for } -\infty \lt x \lt \infty\\ &=1+x+\dfrac{1}{2}x^2+\dfrac{1}{3!}x^3+\cdots+\dfrac{1}{n!}x^n+\cdots\\ \sin x&=\sum_{n=0}^\infty\dfrac{(-1)^n}{(2n+1)!}x^{2n+1} &&\text{for } -\infty \lt x \lt \infty\\ &=x-\dfrac{1}{3!}x^3+\dfrac{1}{5!}x^5-\cdots +\dfrac{(-1)^n}{(2n+1)!}x^{2n+1}+\cdots\\ \cos x&=\sum_{n=0}^\infty\dfrac{(-1)^n}{(2n)!}x^{2n} &&\text{for } -\infty \lt x \lt \infty\\ &=1-\dfrac{1}{2!}x^2+\dfrac{1}{4!}x^4-\cdots +\dfr…
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83/%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B7%D0%BC%D1%96%D0%BD%D0%BD%D0%B5_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_CLP-3_(Feldman%2C_Rechnitzer_%D1%82%D0%B0_Yeager)
    Цей підручник охоплює багатоваріантні обчислення. Є глави про вектори та геометрію у 2 та 3 вимірах, часткові похідні та багатозмінні інтеграли.