Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 2 results
  • https://ukrayinska.libretexts.org/%D0%A5%D1%96%D0%BC%D1%96%D1%8F/%D0%A4%D1%96%D0%B7%D0%B8%D1%87%D0%BD%D0%B0_%D1%96_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D1%85%D1%96%D0%BC%D1%96%D1%8F/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D1%82%D0%B5%D1%80%D0%BC%D0%BE%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D1%96%D0%BA%D0%B0_(Jeschke)/07%3A_%D0%9C%D0%B0%D0%BA%D1%80%D0%BE%D0%BC%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D0%B8/7.02%3A_%D0%95%D0%BD%D1%82%D1%80%D0%BE%D0%BF%D0%BD%D0%B0_%D0%B5%D0%BB%D0%B0%D1%81%D1%82%D0%B8%D1%87%D0%BD%D1%96%D1%81%D1%82%D1%8C
    \[\begin{align} \langle R^2 \rangle & = \langle \vec{R}_n^2 \rangle \\ & = \langle \vec{R}_n \cdot \vec{R}_n \rangle \\ & = \left\langle \left( \sum_{i=1}^n \vec{r}_i \right) \cdot \left( \sum_{j=1}^n...R2=R2n=RnRn=(ni=1ri)(nj=1rj)=ni=1nj=1rirj .
  • https://ukrayinska.libretexts.org/%D0%A5%D1%96%D0%BC%D1%96%D1%8F/%D0%91%D1%96%D0%BE%D0%BB%D0%BE%D0%B3%D1%96%D1%87%D0%BD%D0%B0_%D1%85%D1%96%D0%BC%D1%96%D1%8F/%D0%9F%D0%BE%D0%BD%D1%8F%D1%82%D1%82%D1%8F_%D0%B2_%D0%B1%D1%96%D0%BE%D1%84%D1%96%D0%B7%D0%B8%D1%87%D0%BD%D1%96%D0%B9_%D1%85%D1%96%D0%BC%D1%96%D1%97_(Tokmakoff)/02%3A_%D0%9C%D0%B0%D0%BA%D1%80%D0%BE%D0%BC%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D0%B8/07%3A_%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%BD%D0%B8%D0%B9_%D0%BE%D0%BF%D0%B8%D1%81_%D0%B2%D0%B8%D1%81%D0%BE%D0%BA%D0%BE%D0%BC%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D1%8F%D1%80%D0%BD%D0%BE%D1%97_%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D0%B8/7.01%3A_%D0%A1%D0%B5%D0%B3%D0%BC%D0%B5%D0%BD%D1%82%D0%BD%D1%96_%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D1%96
    \[\begin{array} {rcl} {\langle \vec{R}^2 \rangle } & = & {n \ell^2 + \sum_{j \ne i} \langle \vec{\ell_i} \cdot \vec{\ell_j} \rangle} \\ {} & = & {n \ell^2 + \ell^2 \sum_{j \ne i} \langle \cos \theta_{...R2=n2+jiij=n2+2jicosθij ii+2=cos(θi)cos(θi+1)sin(θi)sin(θi+1)cos(ϕi+1)=2cos2θ