Skip to main content
LibreTexts - Ukrayinska

12.2: Повноваження та коріння

  • Page ID
    57935
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Таблиця В1

    \(n\) \(n^{2}\) \(\sqrt{n}\) \(n^{3}\) \(\sqrt[3]{n}\)
    \ (n\) ">1 \ (n^ {2}\) ">1 \ (\ sqrt {n}\) ">1 \ (n^ {3}\) ">1 \ (\ sqrt [3] {n}\) ">1
    \ (n\) ">2 \ (n^ {2}\) ">4 \ (\ sqrt {n}\) ">1.414214 \ (n^ {3}\) ">8 \ (\ sqrt [3] {n}\) ">1.259921
    \ (n\) ">3 \ (n^ {2}\) ">9 \ (\ sqrt {n}\) ">1.732051 \ (n^ {3}\) ">27 \ (\ sqrt [3] {n}\) ">1.442250
    \ (n\) ">4 \ (n^ {2}\) ">16 \ (\ sqrt {n}\) ">2 \ (n^ {3}\) ">64 \ (\ sqrt [3] {n}\) ">1.587401
    \ (n\) ">5 \ (n^ {2}\) ">25 \ (\ sqrt {n}\) ">2.236068 \ (n^ {3}\) ">125 \ (\ sqrt [3] {n}\) ">1.709976
    \ (n\) ">6 \ (n^ {2}\) ">36 \ (\ sqrt {n}\) ">2.449490 \ (n^ {3}\) ">216 \ (\ sqrt [3] {n}\) ">1.817121
    \ (n\) ">7 \ (n^ {2}\) ">49 \ (\ sqrt {n}\) ">2.645751 \ (n^ {3}\) ">343 \ (\ sqrt [3] {n}\) ">1.912931
    \ (n\) ">8 \ (n^ {2}\) ">64 \ (\ sqrt {n}\) ">2.828427 \ (n^ {3}\) ">512 \ (\ sqrt [3] {n}\) ">2
    \ (n\) ">9 \ (n^ {2}\) ">81 \ (\ sqrt {n}\) ">3 \ (n^ {3}\) ">729 \ (\ sqrt [3] {n}\) ">2.080084
    \ (n\) ">10 \ (n^ {2}\) ">100 \ (\ sqrt {n}\) ">3.162278 \ (n^ {3}\) ">1,000 \ (\ sqrt [3] {n}\) ">2.154435
    \ (n\) ">11 \ (n^ {2}\) ">121 \ (\ sqrt {n}\) ">3316625 \ (n^ {3}\) ">1,331 \ (\ sqrt [3] {n}\) ">1.223980
    \ (n\) ">12 \ (n^ {2}\) ">144 \ (\ sqrt {n}\) ">3.464102 \ (n^ {3}\) ">1,728 \ (\ sqrt [3] {n}\) ">2.289428
    \ (n\) ">13 \ (n^ {2}\) ">169 \ (\ sqrt {n}\) ">3.605551 \ (n^ {3}\) ">2,197 \ (\ sqrt [3] {n}\) ">2.351335
    \ (n\) ">14 \ (n^ {2}\) ">196 \ (\ sqrt {n}\) ">3.741657 \ (n^ {3}\) ">2,744 \ (\ sqrt [3] {n}\) ">2.410142
    \ (n\) ">15 \ (n^ {2}\) ">225 \ (\ sqrt {n}\) ">3.872983 \ (n^ {3}\) ">3,375 \ (\ sqrt [3] {n}\) ">2,466212
    \ (n\) ">16 \ (n^ {2}\) ">256 \ (\ sqrt {n}\) ">4 \ (n^ {3}\) ">4,096 \ (\ sqrt [3] {n}\) ">2.519842
    \ (n\) ">17 \ (n^ {2}\) ">289 \ (\ sqrt {n}\) ">4.123106 \ (n^ {3}\) ">4,913 \ (\ sqrt [3] {n}\) ">2.571282
    \ (n\) ">18 \ (n^ {2}\) ">324 \ (\ sqrt {n}\) ">4.242641 \ (n^ {3}\) ">5,832 \ (\ sqrt [3] {n}\) ">2.620741
    \ (n\) ">19 \ (n^ {2}\) ">361 \ (\ sqrt {n}\) ">4.358899 \ (n^ {3}\) ">6,859 \ (\ sqrt [3] {n}\) ">2.668402
    \ (n\) ">20 \ (n^ {2}\) ">400 \ (\ sqrt {n}\) ">4.472136 \ (n^ {3}\) ">8,000 \ (\ sqrt [3] {n}\) ">2.714418
    \ (n\) ">21 \ (n^ {2}\) ">441 \ (\ sqrt {n}\) ">4.582576 \ (n^ {3}\) ">9,261 \ (\ sqrt [3] {n}\) ">2.758924
    \ (n\) ">22 \ (n^ {2}\) ">484 \ (\ sqrt {n}\) ">4.690416 \ (n^ {3}\) ">10,648 \ (\ sqrt [3] {n}\) ">2.802039
    \ (n\) ">23 \ (n^ {2}\) ">529 \ (\ sqrt {n}\) ">4.795832 \ (n^ {3}\) ">12,167 \ (\ sqrt [3] {n}\) ">2.843867
    \ (n\) ">24 \ (n^ {2}\) ">576 \ (\ sqrt {n}\) ">4.898979 \ (n^ {3}\) ">13,824 \ (\ sqrt [3] {n}\) ">2.884499
    \ (n\) ">25 \ (n^ {2}\) ">625 \ (\ sqrt {n}\) ">5 \ (n^ {3}\) ">15,625 \ (\ sqrt [3] {n}\) ">2.924018
    \ (n\) ">26 \ (n^ {2}\) ">676 \ (\ sqrt {n}\) ">5.099020 \ (n^ {3}\) ">17,576 \ (\ sqrt [3] {n}\) ">2.962496
    \ (n\) ">27 \ (n^ {2}\) ">729 \ (\ sqrt {n}\) ">5.196152 \ (n^ {3}\) ">19 683 \ (\ sqrt [3] {n}\) ">3
    \ (n\) ">28 \ (n^ {2}\) ">784 \ (\ sqrt {n}\) ">5.291503 \ (n^ {3}\) ">21,952 \ (\ sqrt [3] {n}\) ">3.036589
    \ (n\) ">29 \ (n^ {2}\) ">841 \ (\ sqrt {n}\) ">5.385165 \ (n^ {3}\) ">24,389 \ (\ sqrt [3] {n}\) ">3.072317
    \ (n\) ">30 \ (n^ {2}\) ">900 \ (\ sqrt {n}\) ">5.477226 \ (n^ {3}\) ">27 000 \ (\ sqrt [3] {n}\) ">3.107233
    \ (n\) ">31 \ (n^ {2}\) ">961 \ (\ sqrt {n}\) ">5.567764 \ (n^ {3}\) ">29 791 \ (\ sqrt [3] {n}\) ">3.141381
    \ (n\) ">32 \ (n^ {2}\) ">1,024 \ (\ sqrt {n}\) ">5.656854 \ (n^ {3}\) ">32 768 \ (\ sqrt [3] {n}\) ">3.17482
    \ (n\) ">33 \ (n^ {2}\) ">1,089 \ (\ sqrt {n}\) ">5.744563 \ (n^ {3}\) ">35,937 \ (\ sqrt [3] {n}\) ">3.207534
    \ (n\) ">34 \ (n^ {2}\) ">1,156 \ (\ sqrt {n}\) ">5.830952 \ (n^ {3}\) ">39,304 \ (\ sqrt [3] {n}\) ">3.239612
    \ (n\) ">35 \ (n^ {2}\) ">1,225 \ (\ sqrt {n}\) ">5.916080 \ (n^ {3}\) ">42 875 \ (\ sqrt [3] {n}\) ">3.271066
    \ (n\) ">36 \ (n^ {2}\) ">1,296 \ (\ sqrt {n}\) ">6 \ (n^ {3}\) ">46 656 \ (\ sqrt [3] {n}\) ">3.301927
    \ (n\) ">37 \ (n^ {2}\) ">1,369 \ (\ sqrt {n}\) ">6.082763 \ (n^ {3}\) ">50,653 \ (\ sqrt [3] {n}\) ">3.332222
    \ (n\) ">38 \ (n^ {2}\) ">1,444 \ (\ sqrt {n}\) ">6164414 \ (n^ {3}\) ">54 872 \ (\ sqrt [3] {n}\) ">3.361975
    \ (n\) ">39 \ (n^ {2}\) ">1,521 \ (\ sqrt {n}\) ">6.244998 \ (n^ {3}\) ">59,319 \ (\ sqrt [3] {n}\) ">3.391211
    \ (n\) ">40 \ (n^ {2}\) ">1,600 \ (\ sqrt {n}\) ">6.324555 \ (n^ {3}\) ">64 000 \ (\ sqrt [3] {n}\) ">3.419952
    \ (n\) ">41 \ (n^ {2}\) ">1,681 \ (\ sqrt {n}\) ">6.403124 \ (n^ {3}\) ">68,921 \ (\ sqrt [3] {n}\) ">3.448217
    \ (n\) ">42 \ (n^ {2}\) ">1.764 \ (\ sqrt {n}\) ">6.480741 \ (n^ {3}\) ">74,088 \ (\ sqrt [3] {n}\) ">3.476027
    \ (n\) ">43 \ (n^ {2}\) ">1.849 \ (\ sqrt {n}\) ">6.557439 \ (n^ {3}\) ">79,507 \ (\ sqrt [3] {n}\) ">3.503398
    \ (n\) ">44 \ (n^ {2}\) ">1,936 \ (\ sqrt {n}\) ">6.633250 \ (n^ {3}\) ">85,184 \ (\ sqrt [3] {n}\) ">3.530348
    \ (n\) ">45 \ (n^ {2}\) ">2,025 \ (\ sqrt {n}\) ">6.708204 \ (n^ {3}\) ">91,125 \ (\ sqrt [3] {n}\) ">3.556893
    \ (n\) ">46 \ (n^ {2}\) ">2,116 \ (\ sqrt {n}\) ">6.782330 \ (n^ {3}\) ">97,336 \ (\ sqrt [3] {n}\) ">3.583048
    \ (n\) ">47 \ (n^ {2}\) ">2,209 \ (\ sqrt {n}\) ">6.855655 \ (n^ {3}\) ">103 823 \ (\ sqrt [3] {n}\) ">3.608826
    \ (n\) ">48 \ (n^ {2}\) ">2,304 \ (\ sqrt {n}\) ">6.928203 \ (n^ {3}\) ">110,592 \ (\ sqrt [3] {n}\) ">3.6324241
    \ (n\) ">49 \ (n^ {2}\) ">2,401 \ (\ sqrt {n}\) ">7 \ (n^ {3}\) ">117 649 \ (\ sqrt [3] {n}\) ">3.659306
    \ (n\) ">50 \ (n^ {2}\) ">2,500 \ (\ sqrt {n}\) ">7.071068 \ (n^ {3}\) ">125 000 \ (\ sqrt [3] {n}\) ">3.684031
    \ (n\) ">51 \ (n^ {2}\) ">2,601 \ (\ sqrt {n}\) ">7.141428 \ (n^ {3}\) ">132,651 \ (\ sqrt [3] {n}\) ">3.708430
    \ (n\) ">52 \ (n^ {2}\) ">2,704 \ (\ sqrt {n}\) ">7.211103 \ (n^ {3}\) ">140,608 \ (\ sqrt [3] {n}\) ">3.732511
    \ (n\) ">53 \ (n^ {2}\) ">2,809 \ (\ sqrt {n}\) ">7.280110 \ (n^ {3}\) ">148,877 \ (\ sqrt [3] {n}\) ">3.756286
    \ (n\) ">54 \ (n^ {2}\) ">2,916 \ (\ sqrt {n}\) ">7.348469 \ (n^ {3}\) ">157 464 \ (\ sqrt [3] {n}\) ">3.779763
    \ (n\) ">55 \ (n^ {2}\) ">3,025 \ (\ sqrt {n}\) ">7.416198 \ (n^ {3}\) ">166,375 \ (\ sqrt [3] {n}\) ">3.802952
    \ (n\) ">56 \ (n^ {2}\) ">3,136 \ (\ sqrt {n}\) ">7.483315 \ (n^ {3}\) ">175 616 \ (\ sqrt [3] {n}\) ">3.825862
    \ (n\) ">57 \ (n^ {2}\) ">3,249 \ (\ sqrt {n}\) ">7.549834 \ (n^ {3}\) ">185,193 \ (\ sqrt [3] {n}\) ">3.848501
    \ (n\) ">58 \ (n^ {2}\) ">3,364 \ (\ sqrt {n}\) ">7.615773 \ (n^ {3}\) ">195,112 \ (\ sqrt [3] {n}\) ">3.870877
    \ (n\) ">59 \ (n^ {2}\) ">3,481 \ (\ sqrt {n}\) ">7.681146 \ (n^ {3}\) ">205 379 \ (\ sqrt [3] {n}\) ">3.892996
    \ (n\) ">60 \ (n^ {2}\) ">3,600 \ (\ sqrt {n}\) ">7.745967 \ (n^ {3}\) ">216,000 \ (\ sqrt [3] {n}\) ">3.914868
    \ (n\) ">61 \ (n^ {2}\) ">3,721 \ (\ sqrt {n}\) ">7.810250 \ (n^ {3}\) ">226,981 \ (\ sqrt [3] {n}\) ">3.936497
    \ (n\) ">62 \ (n^ {2}\) ">3,844 \ (\ sqrt {n}\) ">7.874008 \ (n^ {3}\) ">238,328 \ (\ sqrt [3] {n}\) ">3.957892
    \ (n\) ">63 \ (n^ {2}\) ">3,969 \ (\ sqrt {n}\) ">7.937254 \ (n^ {3}\) ">250,047 \ (\ sqrt [3] {n}\) ">3.979057
    \ (n\) ">64 \ (n^ {2}\) ">4,096 \ (\ sqrt {n}\) ">8 \ (n^ {3}\) ">262,144 \ (\ sqrt [3] {n}\) ">4
    \ (n\) ">65 \ (n^ {2}\) ">4,225 \ (\ sqrt {n}\) ">8.062258 \ (n^ {3}\) ">274,625 \ (\ sqrt [3] {n}\) ">4.020726
    \ (n\) ">66 \ (n^ {2}\) ">6,356 \ (\ sqrt {n}\) ">8.124038 \ (n^ {3}\) ">287,496 \ (\ sqrt [3] {n}\) ">4.041240
    \ (n\) ">67 \ (n^ {2}\) ">4,489 \ (\ sqrt {n}\) ">8.185353 \ (n^ {3}\) ">300,763 \ (\ sqrt [3] {n}\) ">4.061548
    \ (n\) ">68 \ (n^ {2}\) ">4,624 \ (\ sqrt {n}\) ">8.246211 \ (n^ {3}\) ">314,432 \ (\ sqrt [3] {n}\) ">4.081655
    \ (n\) ">69 \ (n^ {2}\) ">4,761 \ (\ sqrt {n}\) ">8.306624 \ (n^ {3}\) ">328,509 \ (\ sqrt [3] {n}\) ">4.101566
    \ (n\) ">70 \ (n^ {2}\) ">4,900 \ (\ sqrt {n}\) ">8.366600 \ (n^ {3}\) ">343 000 \ (\ sqrt [3] {n}\) ">4.121285
    \ (n\) ">71 \ (n^ {2}\) ">5,041 \ (\ sqrt {n}\) ">8.426150 \ (n^ {3}\) ">357,911 \ (\ sqrt [3] {n}\) ">4.140818
    \ (n\) ">72 \ (n^ {2}\) ">5,184 \ (\ sqrt {n}\) ">8.485281 \ (n^ {3}\) ">389,017 \ (\ sqrt [3] {n}\) ">4.179339
    \ (n\) ">73 \ (n^ {2}\) ">5,329 \ (\ sqrt {n}\) ">8.544004 \ (n^ {3}\) ">389,017 \ (\ sqrt [3] {n}\) ">4.179339
    \ (n\) ">74 \ (n^ {2}\) ">5,476 \ (\ sqrt {n}\) ">8.602325 \ (n^ {3}\) ">405 224 \ (\ sqrt [3] {n}\) ">4.198336
    \ (n\) ">75 \ (n^ {2}\) ">5,625 \ (\ sqrt {n}\) ">8.660254 \ (n^ {3}\) ">421,875 \ (\ sqrt [3] {n}\) ">4.217163
    \ (n\) ">76 \ (n^ {2}\) ">5,776 \ (\ sqrt {n}\) ">8.17798 \ (n^ {3}\) ">438,976 \ (\ sqrt [3] {n}\) ">4.235824
    \ (n\) ">77 \ (n^ {2}\) ">5.929 \ (\ sqrt {n}\) ">8774964 \ (n^ {3}\) ">456,533 \ (\ sqrt [3] {n}\) ">4.254321
    \ (n\) ">78 \ (n^ {2}\) ">6,084 \ (\ sqrt {n}\) ">8.831761 \ (n^ {3}\) ">474,552 \ (\ sqrt [3] {n}\) ">4.272659
    \ (n\) ">79 \ (n^ {2}\) ">6,241 \ (\ sqrt {n}\) ">8.888194 \ (n^ {3}\) ">493,039 \ (\ sqrt [3] {n}\) ">4.290840
    \ (n\) ">80 \ (n^ {2}\) ">6,400 \ (\ sqrt {n}\) ">8.944272 \ (n^ {3}\) ">512 000 \ (\ sqrt [3] {n}\) ">4.308869
    \ (n\) ">81 \ (n^ {2}\) ">6,561 \ (\ sqrt {n}\) ">9 \ (n^ {3}\) ">531,441 \ (\ sqrt [3] {n}\) ">4.326749
    \ (n\) ">82 \ (n^ {2}\) ">6,724 \ (\ sqrt {n}\) ">9.055385 \ (n^ {3}\) ">551,368 \ (\ sqrt [3] {n}\) ">4.344481
    \ (n\) ">83 \ (n^ {2}\) ">6,889 \ (\ sqrt {n}\) ">9.110434 \ (n^ {3}\) ">571,787 \ (\ sqrt [3] {n}\) ">4.362071
    \ (n\) ">84 \ (n^ {2}\) ">7,056 \ (\ sqrt {n}\) ">9.165151 \ (n^ {3}\) ">592 704 \ (\ sqrt [3] {n}\) ">4.379519
    \ (n\) ">85 \ (n^ {2}\) ">7,225 \ (\ sqrt {n}\) ">9.219544 \ (n^ {3}\) ">614,125 \ (\ sqrt [3] {n}\) ">4.396830
    \ (n\) ">86 \ (n^ {2}\) ">7,396 \ (\ sqrt {n}\) ">9.273618 \ (n^ {3}\) ">636,056 \ (\ sqrt [3] {n}\) ">4.414005
    \ (n\) ">87 \ (n^ {2}\) ">7,569 \ (\ sqrt {n}\) ">9.327379 \ (n^ {3}\) ">658,503 \ (\ sqrt [3] {n}\) ">4.431048
    \ (n\) ">88 \ (n^ {2}\) ">7,744 \ (\ sqrt {n}\) ">9.380832 \ (n^ {3}\) ">681,472 \ (\ sqrt [3] {n}\) ">4.447960
    \ (n\) ">89 \ (n^ {2}\) ">7,821 \ (\ sqrt {n}\) ">8.433981 \ (n^ {3}\) ">704,969 \ (\ sqrt [3] {n}\) ">4.464745
    \ (n\) ">90 \ (n^ {2}\) ">8,100 \ (\ sqrt {n}\) ">9.486833 \ (n^ {3}\) ">729 000 \ (\ sqrt [3] {n}\) ">4.481405
    \ (n\) ">91 \ (n^ {2}\) ">8,281 \ (\ sqrt {n}\) ">9.539392 \ (n^ {3}\) ">753,571 \ (\ sqrt [3] {n}\) ">4.497941
    \ (n\) ">92 \ (n^ {2}\) ">8,464 \ (\ sqrt {n}\) ">9.591663 \ (n^ {3}\) ">778,688 \ (\ sqrt [3] {n}\) ">4.514357
    \ (n\) ">93 \ (n^ {2}\) ">8,649 \ (\ sqrt {n}\) ">9.643651 \ (n^ {3}\) ">804,357 \ (\ sqrt [3] {n}\) ">4.530655
    \ (n\) ">94 \ (n^ {2}\) ">8,836 \ (\ sqrt {n}\) ">9.695360 \ (n^ {3}\) ">830,584 \ (\ sqrt [3] {n}\) ">4.546836
    \ (n\) ">95 \ (n^ {2}\) ">9,025 \ (\ sqrt {n}\) ">9.746794 \ (n^ {3}\) ">857,375 \ (\ sqrt [3] {n}\) ">4.562903
    \ (n\) ">96 \ (n^ {2}\) ">9,216 \ (\ sqrt {n}\) ">9.797959 \ (n^ {3}\) ">884,736 \ (\ sqrt [3] {n}\) ">4.578857
    \ (n\) ">97 \ (n^ {2}\) ">9,409 \ (\ sqrt {n}\) ">9.848858 \ (n^ {3}\) ">912,673 \ (\ sqrt [3] {n}\) ">4.594701
    \ (n\) ">98 \ (n^ {2}\) ">9,604 \ (\ sqrt {n}\) ">9.899495 \ (n^ {3}\) ">941,192 \ (\ sqrt [3] {n}\) ">4.610436
    \ (n\) ">99 \ (n^ {2}\) ">9,801 \ (\ sqrt {n}\) ">9.949874 \ (n^ {3}\) ">970,299 \ (\ sqrt [3] {n}\) ">4.62065
    \ (n\) ">100 \ (n^ {2}\) ">10,000 \ (\ sqrt {n}\) ">10 \ (n^ {3}\) ">1 000 000 \ (\ sqrt [3] {n}\) ">4.641589

    Автори та авторства

    • Was this article helpful?