Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://ukrayinska.libretexts.org/%D1%84%D1%96%D0%B7%D0%B8%D0%BA%D0%B8/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%BD%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%BD%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0_(Tatum)/15%3A_%D0%A1%D0%BF%D0%B5%D1%86%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0_%D0%B2%D1%96%D0%B4%D0%BD%D0%BE%D1%81%D0%BD%D1%96%D1%81%D1%82%D1%8C/15.27%3A_%D0%95%D0%BD%D0%B5%D1%80%D0%B3%D1%96%D1%8F_%D1%82%D0%B0_%D1%96%D0%BC%D0%BF%D1%83%D0%BB%D1%8C%D1%81
    \( p_{x}=mu_{x}=\frac{m_{0}u_{x}}{\left(1-\frac{u_{x}^{2}}{c^{2}}\right)^{\frac{1}{2}}}\)і\( p'_{x'}=m'u'_{x'}=\frac{m_{0}u'_{x'}}{\left(1-\frac{u_{x'}^{2}}{c^{2}}\right)^{\frac{1}{2}}}\). Також\( u'_...\( p_{x}=mu_{x}=\frac{m_{0}u_{x}}{\left(1-\frac{u_{x}^{2}}{c^{2}}\right)^{\frac{1}{2}}}\)і\( p'_{x'}=m'u'_{x'}=\frac{m_{0}u'_{x'}}{\left(1-\frac{u_{x'}^{2}}{c^{2}}\right)^{\frac{1}{2}}}\). Також\( u'_{x'}=\frac{u_{x}-v}{\left(1-\frac{u_{x}^{2}}{c^{2}}\right)}\), з якого\( \left(1-\frac{u'^{2}_{x'}}{c^{2}}\right)^{\frac{1}{2}}=\frac{\left(1-\frac{u_{x}^{2}}{c^{2}}\right)^{\frac{1}{2}}\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}}{1-\frac{u_{x}v}{c^{2}}}\).