Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://ukrayinska.libretexts.org/%D1%84%D1%96%D0%B7%D0%B8%D0%BA%D0%B8/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%BD%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%BD%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0_(Tatum)/02%3A_%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82%D0%B8_%D1%96%D0%BD%D0%B5%D1%80%D1%86%D1%96%D1%97/2.20%3A_%D0%95%D0%BB%D1%96%D0%BF%D1%81%D0%B8_%D1%82%D0%B0_%D0%B5%D0%BB%D1%96%D0%BF%D1%81%D0%BE%D1%97%D0%B4%D0%B8
    \( g ( \chi ) = \frac{(2-\chi ^2) (1-\chi ^2) - \chi^4 \ln\left[\left(1 + \sqrt{1- \chi^2}\right)/ \chi\right]}{4 \left\{ (1- \chi^2)^{3/2} + \chi^2 (1-\chi^2) \ln\left[(1 + \sqrt{1- \chi^2})/ \chi \r...g(χ)=(2χ2)(1χ2)χ4ln[(1+1χ2)/χ]4{(1χ2)3/2+χ2(1χ2)ln[(1+1χ2)/χ]}дляχ1 g(χ)=1χ4(χ1)3/2sin1(χ21χ)+χ22χ214{χ2χ21sin1(χ21χ)+1}дляχ1