Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://ukrayinska.libretexts.org/%D1%84%D1%96%D0%B7%D0%B8%D0%BA%D0%B8/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%BD%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%BD%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0_(Tatum)/01%3A_%D0%A6%D0%B5%D0%BD%D1%82%D1%80%D0%B8_%D0%BC%D0%B0%D1%81/1.04%3A_%D0%9A%D1%80%D0%B8%D0%B2%D1%96_%D0%BF%D0%BB%D0%BE%D1%89%D0%B8%D0%BD%D0%B8
    ¯x=bax1+(dydx)2dxba1+(dydx)2dx \[ \delta s ...\boldsymbol{\overline{x} = \dfrac{\displaystyle \int_a^b x \sqrt{ 1+\left( \dfrac{dy}{dx} \right)^2} dx } { \displaystyle \int_a^b \sqrt{ 1+ \left(\dfrac{dy}{dx}\right)^2} dx} \label{eq:1.4.4A}} δs=(δr)2+(rδθ)2=(drdθ)2+r2δθ=1+(rdθdr)2δr.