Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://ukrayinska.libretexts.org/%D1%84%D1%96%D0%B7%D0%B8%D0%BA%D0%B8/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0/%D0%92%D1%81%D1%82%D1%83%D0%BF%D0%BD%D0%B0_%D0%BA%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0_(Fitzpatrick)/14%3A_%D0%A2%D0%B5%D0%BE%D1%80%D1%96%D1%8F_%D1%80%D0%BE%D0%B7%D1%81%D1%96%D1%8E%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F/14.03%3A_%D0%A7%D0%B0%D1%81%D1%82%D0%BA%D0%BE%D0%B2%D1%96_%D1%85%D0%B2%D0%B8%D0%BB%D1%96
    \[\psi_0({\bf r}) \simeq \sqrt{n} \sum_l {\rm i}^{\,l}\, (2l+1)\left[\frac{ {\rm e}^{\,{\rm i}\,(k\,r - l\,\pi/2)} -{\rm e}^{-{\rm i}\,(k\,r - l\,\pi/2)}}{2\,{\rm i}\,k\,r} \right]P_l(\cos\theta)\labe...ψ0(r)nlil(2l+1)[ei(krlπ/2)ei(krlπ/2)2ikr]Pl(cosθ)в великомуr ліміті.