Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://ukrayinska.libretexts.org/%D1%84%D1%96%D0%B7%D0%B8%D0%BA%D0%B8/%D0%92%D1%96%D0%B4%D0%BD%D0%BE%D1%81%D0%BD%D1%96%D1%81%D1%82%D1%8C/%D0%97%D0%B0%D0%B3%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0_%D0%B2%D1%96%D0%B4%D0%BD%D0%BE%D1%81%D0%BD%D1%96%D1%81%D1%82%D1%8C_(Crowell)/10%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BA%D0%B8/10.01%3A_%D0%94%D0%BE%D0%B4%D0%B0%D1%82%D0%BE%D0%BA_%D0%90_(%D1%87%D0%B0%D1%81%D1%82%D0%B8%D0%BD%D0%B0_1)
    \[\begin{split} t' &= \phi (-v) \beta (-v) \left(\tau + \dfrac{v \xi}{c^{2}} \right) &= \phi (v) \phi (-v) t, \\ x' &= \phi (-v) \beta (-v) (\xi + v \tau) &= \phi (v) \phi (-v) x, \\ y' &= \phi (-v) \...t=ϕ(v)β(v)(τ+vξc2)=ϕ(v)ϕ(v)t,x=ϕ(v)β(v)(ξ+vτ)=ϕ(v)ϕ(v)x,y=ϕ(v)η=ϕ(v)ϕ(v)y,z=ϕ(v)ζ=ϕ(v)ϕ(v)z.