Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
    • There are no locations to filter by
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%90%D0%BD%D0%B0%D0%BB%D1%96%D0%B7/%D0%92%D1%81%D1%82%D1%83%D0%BF_%D0%B4%D0%BE_%D1%80%D0%B5%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE_%D0%B0%D0%BD%D0%B0%D0%BB%D1%96%D0%B7%D1%83_(Lebl)/11%3A_%D0%91%D0%B0%D0%B3%D0%B0%D1%82%D0%BE%D0%B2%D0%B0%D1%80%D1%96%D0%B0%D0%BD%D1%82%D0%BD%D1%96%D1%81%D1%82%D1%8C_%D0%86%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0/11.06%3A_%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%93%D1%80%D1%96%D0%BD%D0%B0
    Припустимо, що перегородка досить добре така, що\[\epsilon + \int_S \left\lvert {J_g(x)} \right\rvert \, dx \geq \sum_{j=1}^N \Bigl(\sup_{x \in S \cap R_j} \left\lvert {J_g(x)} \right\rvert \Bigr) V(R...Припустимо, що перегородка досить добре така, що\[\epsilon + \int_S \left\lvert {J_g(x)} \right\rvert \, dx \geq \sum_{j=1}^N \Bigl(\sup_{x \in S \cap R_j} \left\lvert {J_g(x)} \right\rvert \Bigr) V(R_j)\]... \[\sum_{j=1}^N \Bigl(\sup_{x \in S \cap R_j} \left\lvert {J_g(x)} \right\rvert \Bigr) V(R_j) \geq \sum_{j=1}^N \left\lvert {J_g(x_j)} \right\rvert V(R_j) = \sum_{j=1}^N V\bigl(Dg(x_j) R_j\bigr)\]... FIXME... повинен\(x_j\) правильно вибрати?