Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
    • There are no locations to filter by
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0/%D0%95%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D0%B0_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0_(Ellis_%D1%96_Burzynski)/08%3A_%D0%A0%D0%B0%D1%86%D1%96%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%96_%D0%B2%D0%B8%D1%80%D0%B0%D0%B7%D0%B8/8.13%3A_%D0%86%D1%81%D0%BF%D0%B8%D1%82_%D0%BD%D0%B0_%D0%BA%D0%B2%D0%B0%D0%BB%D1%96%D1%84%D1%96%D0%BA%D0%B0%D1%86%D1%96%D1%8E
    \(-\dfrac{3}{x+4} = \dfrac{?}{x + 4}\) \(\dfrac{2x + 5}{-x + 1} = \dfrac{?}{x - 1}\) \(\dfrac{x^2 + 10x + 24}{x^2 + x - 30}\) \((x−3)(x+2)\) Припустимо\(a^2 + a - 6, a^2 - a - 12\), що, і\(a^2 - 2a - ...\(-\dfrac{3}{x+4} = \dfrac{?}{x + 4}\) \(\dfrac{2x + 5}{-x + 1} = \dfrac{?}{x - 1}\) \(\dfrac{x^2 + 10x + 24}{x^2 + x - 30}\) \((x−3)(x+2)\) Припустимо\(a^2 + a - 6, a^2 - a - 12\), що, і\(a^2 - 2a - 8\) є знаменниками раціональних виразів. \((a+2)(a−2)(a+3)(a−4)\) Вирішити\(\dfrac{1}{x+3} + \dfrac{3}{x-3} = \dfrac{x}{x^2 - 9}\) Спростити складний дріб\(\dfrac{4 - \frac{3}{x}}{4 + \frac{3}{x}}\) Спростити складний дріб\(\dfrac{1-\frac{5}{x}-\frac{6}{x^{2}}}{1+\frac{6}{x}+\frac{5}{x^{2}}}\)