Search Back to top Filter ResultsLocationThere are no locations to filter byClassificationArticle typeBook or UnitChapterSection or PageN/AN/AShow Page TOCYes on PageNo on PageCover PageSet Cover Page/Add to Download CenterSet Cover Page/Not in Download CenterCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLMixed LicensesCK-12Caltech LicenseCollectionTranscludedyesLicense Version1.02.02.53.04.01.3Include attachmentsContent TypeDocumentImageOther Searching inAll resultsAbout 1 results8.13: Іспит на кваліфікаціюhttps://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0/%D0%95%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D0%B0_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0_(Ellis_%D1%96_Burzynski)/08%3A_%D0%A0%D0%B0%D1%86%D1%96%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%96_%D0%B2%D0%B8%D1%80%D0%B0%D0%B7%D0%B8/8.13%3A_%D0%86%D1%81%D0%BF%D0%B8%D1%82_%D0%BD%D0%B0_%D0%BA%D0%B2%D0%B0%D0%BB%D1%96%D1%84%D1%96%D0%BA%D0%B0%D1%86%D1%96%D1%8E\(-\dfrac{3}{x+4} = \dfrac{?}{x + 4}\) \(\dfrac{2x + 5}{-x + 1} = \dfrac{?}{x - 1}\) \(\dfrac{x^2 + 10x + 24}{x^2 + x - 30}\) \((x−3)(x+2)\) Припустимо\(a^2 + a - 6, a^2 - a - 12\), що, і\(a^2 - 2a - ...\(-\dfrac{3}{x+4} = \dfrac{?}{x + 4}\) \(\dfrac{2x + 5}{-x + 1} = \dfrac{?}{x - 1}\) \(\dfrac{x^2 + 10x + 24}{x^2 + x - 30}\) \((x−3)(x+2)\) Припустимо\(a^2 + a - 6, a^2 - a - 12\), що, і\(a^2 - 2a - 8\) є знаменниками раціональних виразів. \((a+2)(a−2)(a+3)(a−4)\) Вирішити\(\dfrac{1}{x+3} + \dfrac{3}{x-3} = \dfrac{x}{x^2 - 9}\) Спростити складний дріб\(\dfrac{4 - \frac{3}{x}}{4 + \frac{3}{x}}\) Спростити складний дріб\(\dfrac{1-\frac{5}{x}-\frac{6}{x^{2}}}{1+\frac{6}{x}+\frac{5}{x^{2}}}\)MoreShow more results