Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
    • There are no locations to filter by
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%90%D0%BD%D0%B0%D0%BB%D1%96%D0%B7/%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0%3A_%D0%91%D1%83%D0%BA%D0%B2%D0%B0%D1%80_%D1%80%D0%B5%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE_%D0%B0%D0%BD%D0%B0%D0%BB%D1%96%D0%B7%D1%83_(Sloughter)/08%3A_%D0%91%D1%96%D0%BB%D1%8C%D1%88%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D0%B9/8.01%3A_%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%8F_%D0%B0%D1%80%D0%BA%D1%82%D0%B0%D0%BD%D0%B3%D0%B5%D0%BD%D1%81%D0%B0
    Використовуючи підстановку у\(t=\frac{1}{u},\) нас \[\begin{aligned} \arctan \left(\frac{1}{x}\right) &=\int_{0}^{\frac{1}{x}} \frac{1}{1+t^{2}} d t \\ &=\int_{+\infty}^{x} \frac{1}{1+\frac{1}{u^{2}}}...Використовуючи підстановку у\(t=\frac{1}{u},\) нас \[\begin{aligned} \arctan \left(\frac{1}{x}\right) &=\int_{0}^{\frac{1}{x}} \frac{1}{1+t^{2}} d t \\ &=\int_{+\infty}^{x} \frac{1}{1+\frac{1}{u^{2}}}\left(-\frac{1}{u^{2}}\right) d u \\ &=-\int_{+\infty}^{x} \frac{1}{1+u^{2}} d u \\ &=\int_{x}^{+\infty} \frac{1}{1+u^{2}} d u \\ &=\frac{\pi}{2}-\int_{0}^{x} \frac{1}{1+u^{2}} d u \\ &=\frac{\pi}{2}-\arctan (x). \end{aligned}\] Q.E.D.