Loading [MathJax]/extensions/mml2jax.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
    • There are no locations to filter by
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%90%D0%BD%D0%B0%D0%BB%D1%96%D0%B7/%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0%3A_%D0%91%D1%83%D0%BA%D0%B2%D0%B0%D1%80_%D1%80%D0%B5%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE_%D0%B0%D0%BD%D0%B0%D0%BB%D1%96%D0%B7%D1%83_(Sloughter)/07%3A_%D0%86%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D0%B8/7.03%3A_%D0%A3%D0%BC%D0%BE%D0%B2%D0%B8_%D1%96%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D1%86%D1%96%D1%97
    \(\epsilon>0,\)Дано нехай \[\gamma=\frac{\epsilon}{b-a}.\] Оскільки\(f\) є рівномірно безперервним,\([a, b],\) ми можемо вибрати\(\delta>0\) такі, що \[|f(x)-f(y)|<\gamma\] всякий раз, коли\(|x-y|<\de...\(\epsilon>0,\)Дано нехай \[\gamma=\frac{\epsilon}{b-a}.\] Оскільки\(f\) є рівномірно безперервним,\([a, b],\) ми можемо вибрати\(\delta>0\) такі, що \[|f(x)-f(y)|<\gamma\] всякий раз, коли\(|x-y|<\delta .\)\(P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}\) Дозволяти бути розділом з \[\sup \left\{\left|x_{i}-x_{i-1}\right|: i=1,2, \ldots, n\right\}<\delta .\] Якщо, за\(i=1,2, \dots, n\), \[m_{i}=\inf \left\{f(x): x_{i-1} \leq x \leq x_{i}\right\}\] і \[M_{i}=\sup \left\{f(x): x_{i-1} \leq x \leq …