Loading [MathJax]/extensions/mml2jax.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
    • There are no locations to filter by
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%90%D0%BD%D0%B0%D0%BB%D1%96%D0%B7/%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0%3A_%D0%91%D1%83%D0%BA%D0%B2%D0%B0%D1%80_%D1%80%D0%B5%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B3%D0%BE_%D0%B0%D0%BD%D0%B0%D0%BB%D1%96%D0%B7%D1%83_(Sloughter)/06%3A_%D0%9F%D0%BE%D1%85%D1%96%D0%B4%D0%BD%D1%96/6.06%3A_%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%A2%D0%B5%D0%B9%D0%BB%D0%BE%D1%80%D0%B0
    Спочатку зверніть увагу, що\(P^{(k)}(\alpha)=f^{(k)}(\alpha)\) для\(k=0,1, \ldots, n .\) Let \[M=\frac{f(\beta)-P(\beta)}{(\beta-\alpha)^{n+1}}.\] Тоді \[f(\beta)=P(\beta)+M(\beta-\alpha)^{n+1}.\] Нам...Спочатку зверніть увагу, що\(P^{(k)}(\alpha)=f^{(k)}(\alpha)\) для\(k=0,1, \ldots, n .\) Let \[M=\frac{f(\beta)-P(\beta)}{(\beta-\alpha)^{n+1}}.\] Тоді \[f(\beta)=P(\beta)+M(\beta-\alpha)^{n+1}.\] Нам потрібно показати, що \[M=\frac{f^{(n+1)}(\gamma)}{(n+1) !}\] для деяких\(\gamma\) між\(\alpha\) і\(\beta .\) нехай \[g(x)=f(x)-P(x)-M(x-\alpha)^{n+1}.\] Тоді, для того\(k=0,1, \ldots, n\), \[g^{(k)}(\alpha)=f^{(k)}(\alpha)-P^{(k)}(\alpha)=0.\] Тепер\(g(\beta)=0,\) так, за теоремою Ролле, існує\(\…