Loading [MathJax]/jax/input/MathML/config.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 1 results
  • https://ukrayinska.libretexts.org/%D0%86%D0%BD%D0%B6%D0%B5%D0%BD%D0%B5%D1%80%D0%BD%D0%B0/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D1%96%D0%BA%D0%B0/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BE%D0%BF%D1%82%D0%B8%D0%BA%D0%B0/%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0%3A_%D0%9D%D0%B0%D0%B4%D1%88%D0%B2%D0%B8%D0%B4%D0%BA%D0%B0_%D0%BE%D0%BF%D1%82%D0%B8%D0%BA%D0%B0_(Kaertner)/01%3A_%D0%92%D1%81%D1%82%D1%83%D0%BF/1.04%3A_%D0%9E%D0%B3%D0%BB%D1%8F%D0%B4_%D0%BB%D0%B0%D0%B7%D0%B5%D1%80%D0%BD%D0%B8%D1%85_%D0%BE%D1%81%D0%BD%D0%BE%D0%B2
    \[E = \Re \{ E_0 e^{\tfrac{\omega}{c} n_g'' \ell_g} e^{j\omega t} e^{-j \tfrac{\omega}{c}(n_g' \ell_g + \ell_a)} \}, \nonumber \] \[E = \Re \{ r_1 r_2 e^{2\tfrac{\omega}{c} n_g'' \ell_g} E_0 e^{j\omeg...\[E = \Re \{ E_0 e^{\tfrac{\omega}{c} n_g'' \ell_g} e^{j\omega t} e^{-j \tfrac{\omega}{c}(n_g' \ell_g + \ell_a)} \}, \nonumber \] \[E = \Re \{ r_1 r_2 e^{2\tfrac{\omega}{c} n_g'' \ell_g} E_0 e^{j\omega t -j 2 \tfrac{\omega}{c} \ell} \} \Rightarrow r_1 r_2 e^{2 \tfrac{\omega}{c} n_g'' \ell_g} = 1, \nonumber \] \[A(z, t) = E_0 \dfrac{\sin [\tfrac{N \Delta \omega}{2} ( t - \tfrac{z}{c})]}{\sin [\tfrac{\Delta \omega}{2} ( t - \tfrac{z}{c})]} \nonumber \]