Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
    • There are no locations to filter by
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 2 results
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%9B%D1%96%D0%BD%D1%96%D0%B9%D0%BD%D0%B0_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0/%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0%3A_%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D1%96%D0%B7_(Cox)/05%3A_%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%87%D0%BD%D1%96_%D0%BC%D0%B5%D1%82%D0%BE%D0%B4%D0%B8_%D0%B4%D0%BB%D1%8F_%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D1%96%D1%87%D0%BD%D0%B8%D1%85_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC/5.02%3A_%D0%9F%D0%B5%D1%80%D0%B5%D1%82%D0%B2%D0%BE%D1%80%D0%B5%D0%BD%D0%BD%D1%8F_%D0%9B%D0%B0%D0%BF%D0%BB%D0%B0%D1%81%D0%B0
    L(Bx+g)=L(Bx)+L(g)=BL(x)+L(g) \[\begin{align} ...L(Bx+g)=L(Bx)+L(g)=BL(x)+L(g) \boldsymbol{\begin{align} \mathscr{L} \left(\frac{d \textbf{x}}{dt}\right) &= \int_{0}^{\infty} e^{-(st)} \frac{d \textbf{x}(t)}{dt} dt \\[4pt] &= \textbf{x}(t) \left. \[s \mathscr{L} (\textbf{x})- \textbf{x}(0) = B \mathscr{L}(\textbf{x})+\mathscr{L}(\textbf{g}) \nonumber}
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%9B%D1%96%D0%BD%D1%96%D0%B9%D0%BD%D0%B0_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0/%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0%3A_%D0%9C%D0%B0%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B8%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D1%96%D0%B7_(Cox)/08%3A_%D0%9F%D1%80%D0%BE%D0%B1%D0%BB%D0%B5%D0%BC%D0%B0_%D0%B7_%D0%B2%D0%BB%D0%B0%D1%81%D0%BD%D0%B8%D0%BC_%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%BD%D1%8F%D0%BC/8.02%3A_%D0%A0%D0%B5%D0%B7%D0%BE%D0%BB%D1%8C%D0%B2%D0%B5%D0%BD%D1%82
    1sb=1s1bs=1s+bs2++bn1sn+bnsn1sb \[(sI-B)^{-1} = s^{-1} \left(I-\frac{B}{s}\right)...1sb=1s1bs=1s+bs2++bn1sn+bnsn1sb (sIB)1=s1(IBs)1(1s+Bs2++Bn1sn+Bnsn(sIB)1) (s2IB)1(s1IB)1=(s2IB)1(s1IBs2I+B)(s1IB)1