Loading [MathJax]/extensions/mml2jax.js
Skip to main content
LibreTexts - Ukrayinska

Search

  • Filter Results
  • Location
    • There are no locations to filter by
  • Classification
    • Article type
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • License Version
  • Include attachments
Searching in
About 7 results
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0/%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0%3A_%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0_%D1%82%D0%B0_%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%8F_(OpenStax)/05%3A_%D0%9F%D0%BE%D0%BB%D1%96%D0%BD%D0%BE%D0%BC%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D1%96_%D1%82%D0%B0_%D1%80%D0%B0%D1%86%D1%96%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%96_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%97/5.04%3A_%D0%94%D1%96%D0%BB%D0%B8%D0%BB%D1%8C%D0%BD%D1%96_%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%D1%87%D0%BB%D0%B5%D0%BD%D0%B8
    Ми знайомі з алгоритмом поділу довгих для звичайної арифметики. Починаємо з поділу на цифри дивідендів, які мають найбільше місце значення. Ділимо, множимо, віднімаємо, включаємо цифру в наступному мі...Ми знайомі з алгоритмом поділу довгих для звичайної арифметики. Починаємо з поділу на цифри дивідендів, які мають найбільше місце значення. Ділимо, множимо, віднімаємо, включаємо цифру в наступному місці значення позиції,. Поділ многочленів, що містять більше одного члена, має подібність до довгого ділення цілих чисел. Ми можемо записати поліноміальний дивіденд як добуток дільника, а частка додається до залишку.
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%90%D0%B1%D1%81%D1%82%D1%80%D0%B0%D0%BA%D1%82%D0%BD%D0%B0_%D1%82%D0%B0_%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%BD%D0%B0_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0/%D0%90%D0%B1%D1%81%D1%82%D1%80%D0%B0%D0%BA%D1%82%D0%BD%D0%B0_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0%3A_%D1%82%D0%B5%D0%BE%D1%80%D1%96%D1%8F_%D1%82%D0%B0_%D0%B7%D0%B0%D1%81%D1%82%D0%BE%D1%81%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F_(Judson)/02%3A_%D0%A6%D1%96%D0%BB%D1%96_%D1%87%D0%B8%D1%81%D0%BB%D0%B0/2.02%3A_%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%BF%D0%BE%D0%B4%D1%96%D0%BB%D1%83
    Застосування принципу Well-Ordering, який ми будемо використовувати часто, - це алгоритм поділу.
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D0%BB%D0%BE%D0%B3%D1%96%D0%BA%D0%B0_%D1%82%D0%B0_%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7%D0%B8/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%BD%D0%B5_%D0%BC%D1%96%D1%80%D0%BA%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F_-_%D0%BD%D0%B0%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%BD%D1%8F_%D1%82%D0%B0_%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7_(Sundstrom)/03%3A_%D0%9F%D0%BE%D0%B1%D1%83%D0%B4%D0%BE%D0%B2%D0%B0_%D1%82%D0%B0_%D0%BD%D0%B0%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%BD%D1%8F_%D0%B4%D0%BE%D0%BA%D0%B0%D0%B7%D1%96%D0%B2_%D1%83_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%86%D1%96/3.05%3A_%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%BF%D0%BE%D0%B4%D1%96%D0%BB%D1%83_%D1%82%D0%B0_%D0%BA%D0%BE%D0%BD%D0%B3%D1%80%D1%83%D0%B5%D0%BD%D1%82%D0%BD%D1%96%D1%81%D1%82%D1%8C
    Нагадаємо, що якщо\(a\) і\(b\) є цілими числами, то ми говоримо, що\(a\) є конгруентним по\(b\) модулю за\(n\) умови, що\(n\) ділить\(a - b\), і ми пишемо\(a \equiv b\) (мод\(n\)). (Див. Оскільки\(a \...Нагадаємо, що якщо\(a\) і\(b\) є цілими числами, то ми говоримо, що\(a\) є конгруентним по\(b\) модулю за\(n\) умови, що\(n\) ділить\(a - b\), і ми пишемо\(a \equiv b\) (мод\(n\)). (Див. Оскільки\(a \equiv b\) (мод\(n\)) і\(b \equiv c\) (мод\(n\)), ми знаємо, що\(n | (a - b)\) і\(n | (b - c)\).
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%94%D0%BE_%D1%80%D0%BE%D0%B7%D1%80%D0%B0%D1%85%D1%83%D0%BD%D0%BA%D1%83_%D1%96_%D1%82%D1%80%D0%B8%D0%B3%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D1%96%D1%97/%D0%9F%D0%BE%D0%BF%D0%B5%D1%80%D0%B5%D0%B4%D0%BD%D1%94_%D0%BE%D0%B1%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F_(OpenStax)/03%3A_%D0%9F%D0%BE%D0%BB%D1%96%D0%BD%D0%BE%D0%BC%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D1%96_%D1%82%D0%B0_%D1%80%D0%B0%D1%86%D1%96%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%96_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%97/3.05%3A_%D0%94%D1%96%D0%BB%D0%B8%D0%BB%D1%8C%D0%BD%D1%96_%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%D1%87%D0%BB%D0%B5%D0%BD%D0%B8
    Ми знайомі з алгоритмом поділу довгих для звичайної арифметики. Починаємо з поділу на цифри дивідендів, які мають найбільше місце значення. Ділимо, множимо, віднімаємо, включаємо цифру в наступному мі...Ми знайомі з алгоритмом поділу довгих для звичайної арифметики. Починаємо з поділу на цифри дивідендів, які мають найбільше місце значення. Ділимо, множимо, віднімаємо, включаємо цифру в наступному місці значення позиції,. Поділ многочленів, що містять більше одного члена, має подібність до довгого ділення цілих чисел. Ми можемо записати поліноміальний дивіденд як добуток дільника, а частка додається до залишку.
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%9A%D0%BE%D0%BC%D0%B1%D1%96%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BA%D0%B0_%D1%82%D0%B0_%D0%B4%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%82%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%95%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D1%96%D1%8F_%D1%87%D0%B8%D1%81%D0%B5%D0%BB_(Barrus_%D1%96_Clark)/01%3A_%D0%A0%D0%BE%D0%B7%D0%B4%D1%96%D0%BB%D0%B8/1.05%3A_%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%BF%D0%BE%D0%B4%D1%96%D0%BB%D1%83
    Мета цієї глави полягає в тому, щоб представити і довести наступний важливий результат.
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%9A%D0%BE%D0%BC%D0%B1%D1%96%D0%BD%D0%B0%D1%82%D0%BE%D1%80%D0%B8%D0%BA%D0%B0_%D1%82%D0%B0_%D0%B4%D0%B8%D1%81%D0%BA%D1%80%D0%B5%D1%82%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%95%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D1%96%D1%8F_%D1%87%D0%B8%D1%81%D0%B5%D0%BB_(Raji)/01%3A_%D0%92%D1%81%D1%82%D1%83%D0%BF/1.03%3A_%D0%9F%D0%BE%D0%B4%D1%96%D0%BB%D1%8C%D0%BD%D1%96%D1%81%D1%82%D1%8C_%D1%82%D0%B0_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%BF%D0%BE%D0%B4%D1%96%D0%BB%D1%83
    Ми зараз обговоримо поняття подільності і його властивості.
  • https://ukrayinska.libretexts.org/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%90%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0/%D0%9A%D0%B0%D1%80%D1%82%D0%B0%3A_%D0%9A%D0%BE%D0%BB%D0%B5%D0%B4%D0%B6_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B8_(OpenStax)/05%3A_%D0%9F%D0%BE%D0%BB%D1%96%D0%BD%D0%BE%D0%BC%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D1%96_%D1%82%D0%B0_%D1%80%D0%B0%D1%86%D1%96%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%96_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D1%96%D1%97/505%3A_%D0%94%D1%96%D0%BB%D0%B8%D0%BB%D1%8C%D0%BD%D1%96_%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%D1%87%D0%BB%D0%B5%D0%BD%D0%B8
    Ми знайомі з алгоритмом поділу довгих для звичайної арифметики. Починаємо з поділу на цифри дивідендів, які мають найбільше місце значення. Ділимо, множимо, віднімаємо, включаємо цифру в наступному мі...Ми знайомі з алгоритмом поділу довгих для звичайної арифметики. Починаємо з поділу на цифри дивідендів, які мають найбільше місце значення. Ділимо, множимо, віднімаємо, включаємо цифру в наступному місці значення позиції,. Поділ многочленів, що містять більше одного члена, має подібність до довгого ділення цілих чисел. Ми можемо записати поліноміальний дивіденд як добуток дільника, а частка додається до залишку.