Search Back to top Filter ResultsLocationІнженерна (1)ClassificationArticle typeBook or UnitChapterSection or PageN/AN/AShow Page TOCYes on PageNo on PageCover PageSet Cover Page/Add to Download CenterSet Cover Page/Not in Download CenterCompile but don't publishLicensePublic DomainCC BYCC BY-SACC BY-NC-SACC BY-NDCC BY-NC-NDGNU GPLAll Rights ReservedCC BY-NCGNU FDLMixed LicensesCK-12Caltech LicenseCollectionTranscludedyesLicense Version1.02.02.53.04.01.3Include attachmentsContent TypeDocumentImageOther Searching inAll resultsAbout 1 results2.7: Відносини Крамерса-Кроенігаhttps://ukrayinska.libretexts.org/%D0%86%D0%BD%D0%B6%D0%B5%D0%BD%D0%B5%D1%80%D0%BD%D0%B0/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D1%96%D0%BA%D0%B0/%D0%95%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BE%D0%BF%D1%82%D0%B8%D0%BA%D0%B0/%D0%9A%D0%BD%D0%B8%D0%B3%D0%B0%3A_%D0%9D%D0%B0%D0%B4%D1%88%D0%B2%D0%B8%D0%B4%D0%BA%D0%B0_%D0%BE%D0%BF%D1%82%D0%B8%D0%BA%D0%B0_(Kaertner)/02%3A_%D0%A0%D1%96%D0%B2%D0%BD%D1%8F%D0%BD%D0%BD%D1%8F_%D0%9C%D0%B0%D0%BA%D1%81%D0%B2%D0%B5%D0%BB%D0%BB%D0%B0-%D0%91%D0%BB%D0%BE%D1%85%D0%B0/2.07%3A_%D0%92%D1%96%D0%B4%D0%BD%D0%BE%D1%81%D0%B8%D0%BD%D0%B8_%D0%9A%D1%80%D0%B0%D0%BC%D0%B5%D1%80%D1%81%D0%B0-%D0%9A%D1%80%D0%BE%D0%B5%D0%BD%D1%96%D0%B3%D0%B0\[\chi_r (\Omega) = \dfrac{2}{\pi} \int_{0}^{\infty} \dfrac{\omega \chi_i (\omega)}{\omega^2 - \Omega^2} d\omega = n^2 (\Omega) - 1, \nonumber \] \[\chi_i (\Omega) = -\dfrac{2}{\pi} \int_{0}^{\infty} ...\[\chi_r (\Omega) = \dfrac{2}{\pi} \int_{0}^{\infty} \dfrac{\omega \chi_i (\omega)}{\omega^2 - \Omega^2} d\omega = n^2 (\Omega) - 1, \nonumber \] \[\chi_i (\Omega) = -\dfrac{2}{\pi} \int_{0}^{\infty} \dfrac{\Omega \chi_r (\omega)}{\omega^2 - \Omega^2} d\omega. \nonumber \] \[\begin{align*} n^2 (\Omega) &= 1 + \sum_i A_i \dfrac{\omega_i}{\omega_i^2 - \Omega^2} \\[4pt] &= 1 + \sum_i a_i \dfrac{\lambda}{\lambda^2 - \lambda_i^2} \end{align*} \nonumber \]MoreShow more results