Skip to main content
LibreTexts - Ukrayinska

1.1: Тригонометричні функції

  • Page ID
    61348
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Тригонометрична ідентичність Піфагора є\[\sin^2 x+\cos^2 x=1,\nonumber\] і теореми про додавання є\[\begin{aligned}\sin(x+y)&=\sin(x)\cos(y)+\cos(x)\sin(y), \\ \cos(x+y)&=\cos(x)\cos(y)-\sin(x)\sin(y).\end{aligned}\]

    Також значення\(\sin x\) в першому квадранті можна запам'ятати за правилом чвертей, при\(0^∘ = 0,\)\(30^∘ = π/6,\)\(45^∘ = π/4,\)\(60^∘ = π/3,\)\(90^∘ = π/2\):

    \[\begin{array}{ccccc}\sin 0^{\circ}=\sqrt{\frac{0}{4}},& & \sin 30^{\circ}=\sqrt{\frac{1}{4}},& & \sin 45^{\circ}=\sqrt{\frac{2}{4}}, \\ &\sin 60^{\circ}=\sqrt{\frac{3}{4}},& & \sin 90^{\circ}=\sqrt{\frac{4}{4}}. &\end{array}\nonumber\]

    Корисні також такі властивості симетрії:

    \[\sin (\pi /2-x)=\cos x,\quad \cos(\pi /2-x)=\sin x;\nonumber\]і\[\sin(-x)=-\sin(x),\quad\cos(-x)=\cos(x).\nonumber\]