Значення тригонометричних функцій
- Page ID
- 58904
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
| Кут | Синус | косинус | Тангенс |
|---|---|---|---|
| \(1^{\circ}\) | 0.0175 | 0.9998 | 0.0175 |
| \(2^{\circ}\) | 0.0349 | 0,9994 | 0.0349 |
| \(3^{\circ}\) | 0.0523 | 0,9986 | 0.0524 |
| \(4^{\circ}\) | 0.0698 | 0.9976 | 0.0699 |
| \(5^{\circ}\) | 0.0872 | 0,9962 | 0.0875 |
| \(6^{\circ}\) | 0,1045 | 0,9945 | 0,1051 |
| \(7^{\circ}\) | 0.1219 | 0,9925 | 0.1228 |
| \(8^{\circ}\) | 0,1392 | 0.9903 | 0,1405 |
| \(9^{\circ}\) | 0,1564 | 0.9877 | 0,1584 |
| \(10^{\circ}\) | 0,1736 | 0,9848 | 0,1763 |
| \(11^{\circ}\) | 0.1908 | 0.9816 | 0.1944 |
| \(12^{\circ}\) | 0,2097 | 0,9781 | 0,2126 |
| \(13^{\circ}\) | 0,250 | 0,9744 | 0,2309 |
| \(14^{\circ}\) | 0,2419 | 0.9703 | 0,2493 |
| \(15^{\circ}\) | 0,2588 | 0.9659 | 0,2679 |
| \(16^{\circ}\) | 0,2756 | 0.9613 | 0,2867 |
| \(17^{\circ}\) | 0,2924 | 0,9563 | 0,3057 |
| \(18^{\circ}\) | 0,3090 | 0,9511 | 0,3249 |
| \(19^{\circ}\) | 0,3256 | 0,9455 | 0,3443 |
| \(20^{\circ}\) | 0,3420 | 0,9397 | 0,3640 |
| \(21^{\circ}\) | 0,3584 | 0.9336 | 0,3839 |
| \(22^{\circ}\) | 0,3746 | 0,9272 | 0,4640 |
| \(23^{\circ}\) | 0,3907 | 0,9205 | 0,4245 |
| \(24^{\circ}\) | 0.4067 | 0,9135 | 0,4452 |
| \(25^{\circ}\) | 0,4226 | 0.9063 | 0,4663 |
| \(26^{\circ}\) | 0,4384 | 0.8988 | 0,4877 |
| \(27^{\circ}\) | 0,4540 | 0.8910 | 0,5095 |
| \(28^{\circ}\) | 0,4695 | 0.8829 | 0,5317 |
| \(29^{\circ}\) | 0,4848 | 0.8746 | 0,5543 |
| \(30^{\circ}\) | 0.5000 | 0.8660 | 0.5774 |
| \(31^{\circ}\) | 0,5150 | 0.8572 | 0.6009 |
| \(32^{\circ}\) | 0,5290 | 0.8480 | 0.6249 |
| \(33^{\circ}\) | 0,5446 | 0,8387 | 0.6494 |
| \(34^{\circ}\) | 0,5592 | 0,8290 | 0,6745 |
| \(35^{\circ}\) | 0.5736 | 0,8192 | 0,7002 |
| \(36^{\circ}\) | 0.5878 | 0.8090 | 0,7265 |
| \(37^{\circ}\) | 0.6018 | 0.7986 | 0,7536 |
| \(38^{\circ}\) | 0.6157 | 0,7880 | 0.7813 |
| \(39^{\circ}\) | 0.6293 | 0.7771 | 0.8098 |
| \(40^{\circ}\) | 0,6428 | 0,7660 | 0.8391 |
| \(41^{\circ}\) | 0,6561 | 0,7547 | 0.8693 |
| \(42^{\circ}\) | 0.6691 | 0,7431 | 0.9004 |
| \(43^{\circ}\) | 0.6820 | 0.7314 | 0,9325 |
| \(44^{\circ}\) | 0.6947 | 0,7193 | 0.9657 |
| \(45^{\circ}\) | 0.7071 | 0.7071 | 1.0000 |
| \(46^{\circ}\) | 0,7193 | 0.6947 | 1.035 |
| \(47^{\circ}\) | 0.7314 | 0.6820 | 1.0724 |
| \(48^{\circ}\) | 0,7431 | 0.6691 | 1.1106 |
| \(49^{\circ}\) | 0,7547 | 0,6561 | 1.1504 |
| \(50^{\circ}\) | 0,7660 | 0,6428 | 1.1918 |
| \(51^{\circ}\) | 0.7771 | 0.6293 | 1.2349 |
| \(52^{\circ}\) | 0,7880 | 0.6157 | 1.2799 |
| \(53^{\circ}\) | 0.7986 | 0.6018 | 1.3270 |
| \(54^{\circ}\) | 0.8090 | 0.5878 | 1,3764 |
| \(55^{\circ}\) | 0,8192 | 0.5736 | 1.4281 |
| \(56^{\circ}\) | 0,8290 | 0,5592 | 1.4826 |
| \(57^{\circ}\) | 0,8387 | 0,5446 | 1.5399 |
| \(58^{\circ}\) | 0.8480 | 0.5299 | 1.6003 |
| \(59^{\circ}\) | 0.8572 | 0,5150 | 1.643 |
| \(60^{\circ}\) | 0.8660 | 0.5000 | 1.7321 |
| \(61^{\circ}\) | 0.8746 | 0,4848 | 1.8040 |
| \(62^{\circ}\) | 0.8829 | 0,4695 | 1.8807 |
| \(63^{\circ}\) | 0.8910 | 0,4540 | 1.9626 |
| \(64^{\circ}\) | 0.8988 | 0,4884 | 2.0503 |
| \(65^{\circ}\) | 0.9063 | 0,4226 | 2.1445 |
| \(66^{\circ}\) | 0,9135 | 0.4067 | 2.2460 |
| \(67^{\circ}\) | 0,9205 | 0,3907 | 2.3559 |
| \(68^{\circ}\) | 0,9272 | 0,3746 | 2.4751 |
| \(69^{\circ}\) | 0.9336 | 0,3584 | 2.6051 |
| \(70^{\circ}\) | 0,9397 | 0,3420 | 2.7475 |
| \(71^{\circ}\) | 0,9455 | 0,3256 | 2.9042 |
| \(72^{\circ}\) | 0,9511 | 0,3090 | 3.077 |
| \(73^{\circ}\) | 0,9563 | 0,2924 | 3.2709 |
| \(74^{\circ}\) | 0.9613 | 0,2756 | 3.4874 |
| \(75^{\circ}\) | 0.9659 | 0,2588 | 3.7321 |
| \(76^{\circ}\) | 0.9703 | 0,2419 | 4.0108 |
| \(77^{\circ}\) | 0,9744 | 0,250 | 4.315 |
| \(78^{\circ}\) | 0,9781 | 0,2079 | 4.7046 |
| \(79^{\circ}\) | 0.9816 | 0.1908 | 5.1446 |
| \(80^{\circ}\) | 0,9848 | 0,1736 | 5.6713 |
| \(81^{\circ}\) | 0.9877 | 0,1564 | 6.3138 |
| \(82^{\circ}\) | 0.9903 | 0,1392 | 7.1154 |
| \(83^{\circ}\) | 0,9925 | 0.1219 | 8.1443 |
| \(84^{\circ}\) | 0,9945 | 0,1045 | 9.5144 |
| \(85^{\circ}\) | 0,9962 | 0.0872 | 11.4301 |
| \(86^{\circ}\) | 0.9976 | 0.0698 | 14 300 7 |
| \(87^{\circ}\) | 0,9986 | 0.0523 | 19.0811 |
| \(88^{\circ}\) | 0,9994 | 0.0340 | 28.6363 |
| \(89^{\circ}\) | 0.9998 | 0.0175 | 57.2900 |
| \(90^{\circ}\) | 10.0000 | 0,0000 |
