Skip to main content
LibreTexts - Ukrayinska

4.4: Тригонометрія прямокутного трикутника

  • Page ID
    54442
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Тригонометрія - це вивчення трикутників. Якщо ви знаєте кути трикутника і довжину однієї сторони, можна використовувати властивості аналогічних трикутників і пропорцій, щоб повністю вирішити для відсутніх сторін.

    Уявіть, що намагаєтеся виміряти висоту прапорця. Було б дуже важко виміряти вертикально, тому що це може бути кілька історій заввишки. Замість цього ходити 10 футів і помітити, що прапор стовп робить кут 65 градусів з вашими ногами. Використовуючи цю інформацію, яка висота прапорця?

    Тригонометричні функції

    Шість тригонометричних функцій - синус, косинус, тангенс, котангенс, секанс і косеканс. Opp означає сторону, протилежну куту\(\theta,\) hyp, позначає гіпотенузу, а adj означає сторону, прилеглу до кута\(\theta\).

    \(\begin{aligned} \sin \theta &=\frac{o p p}{h y p} \\ \cos \theta &=\frac{a d j}{h y p} \\ \tan \theta &=\frac{o p p}{a d j} \\ \cot \theta &=\frac{a d j}{o p p} \\ \sec \theta &=\frac{h y p}{a d j} \\ \csc \theta &=\frac{h y p}{o p p} \end{aligned}\)

    Причина, чому існують ці тригонометричні функції, полягає в тому, що два трикутники з однаковими внутрішніми кутами матимуть довжини сторін, які завжди пропорційні. Тригонометричні функції використовуються шляхом ідентифікації двох відомих фрагментів інформації на трикутнику і одного невідомого, налаштування та вирішення для невідомого. Калькулятори важливі, оскільки операції гріха, cos та tan вже запрограмовані. Інші три (cot, sec і csc) зазвичай не є в калькуляторах, оскільки між ними існує взаємний зв'язок і tan, cos і sec.

    \(\sin \theta=\frac{o p p}{h y p}=\frac{1}{\csc \theta}\)
    \(\cos \theta=\frac{a d j}{h y p}=\frac{1}{\sec \theta}\)
    \(\tan \theta=\frac{o p p}{a d j}=\frac{1}{\cot \theta}\)

    Майте на увазі, що ваш калькулятор може бути в градусному режимі або радіановому режимі. Переконайтеся, що ви можете перемикатися вперед і назад, щоб ви завжди були у відповідних одиницях для кожної проблеми.

    Зверніть увагу, що зображення по всій цій концепції не намальовані в масштабі. Якби вам дали наступний трикутник і попросили вирішити для сторони\(b\), ви б використали синус, щоб знайти\(b\).

    \(\begin{aligned} \sin \left(\frac{2 \pi}{7}\right) &=\frac{b}{14} \\ b &=14 \cdot \sin \left(\frac{2 \pi}{7}\right) \approx 10.9 \mathrm{in} \end{aligned}\)

    Приклади

    Приклад 1

    Раніше вас запитали про висоту флагштока, від якого ви знаходитесь на відстані 10 футів. Ви помічаєте, що прапорець робить\(65^{\circ}\) кут ногами.

    Якщо ви знаходитесь на відстані 10 футів від основи флагштока і припускаєте, що флагшток робить\(90^{\circ}\) кут із землею, ви можете використовувати наступний трикутник для моделювання ситуації.

    \(\begin{aligned} \tan 65^{\circ} &=\frac{x}{10} \\ x &=10 \tan 65^{\circ} \approx 21.4 f t \end{aligned}\)

    Приклад 2

    Вирішити для кута\(A\).

    Цю проблему можна вирішити за допомогою sin, cos або tan, оскільки всі наведені протилежні, сусідні та гіпотенузелінги.

    Аргумент, або вхід, функції sin завжди є кутом. \(\sin ^{-1} \theta,\)Функція arcsin, або на калькуляторі має аргумент, який є співвідношенням сторін трикутника.

    \(\begin{aligned} \sin A &=\frac{5}{13} \\ \sin ^{-1}(\sin A) &=\sin ^{-1}\left(\frac{5}{13}\right) \\ A &=\sin ^{-1}\left(\frac{5}{13}\right) \approx 0.39 \text { radian } \approx 22.6^{\circ} \end{aligned}\)

    Приклад 3

    Задано прямокутний трикутник з\(a=12\) in\(, m \angle B=20^{\circ},\) і\(m \angle C=90^{\circ}\), знайти довжину гіпотенузи.

    Корисно намалювати діаграму для представлення даних, наведених у питанні.

    \(\begin{aligned} \cos 20^{\circ} &=\frac{12}{c} \\ c &=\frac{12}{\cos 20^{\circ}} \approx 12.77 \mathrm{in} \end{aligned}\)

    Приклад 4

    З огляду\(B\) на,\(\triangle A B C\) де прямий кут,\(m \angle C=18^{\circ},\) а\(c=12 .\) що таке\(a\)?

    Розмальовуючи цей трикутник, він виглядає так:

    \(\begin{aligned} \tan 18^{\circ} &=\frac{12}{a} \\ a &=\frac{12}{\tan 18^{\circ}} \approx 36.9 \end{aligned}\)

    Приклад 5

    Дано\(O\),\(\triangle M N O\) де знаходиться прямий кут\(m=12\), і\(n=14\). Що таке міра кута\(M\)?
    Розмальовуючи трикутник, він виглядає так:

    \(\begin{aligned} \tan M &=\frac{12}{14} \\ M &=\tan ^{-1}\left(\frac{12}{14}\right) \approx 0.7 \text { radian } \approx 40.6^{\circ} \end{aligned}\)

    Рецензія

    Для\(1-15\), наведено відомості про сторони і/або кути прямокутного трикутника\(A B C\). Повністю розв'яжіть трикутник (знайти всі відсутні сторони і кути) до 1 знака після коми.

    Номер проблеми \(A\) \(B\) \(C\) \(a\) \(b\) \(c\)
    1. \(90^{\circ}\)       4 7
    2. \(90^{\circ}\)   \(37^{\circ}\) 18    
    3.   \(90^{\circ}\) \(15^{\circ}\)   32  
    4.     \(90^{\circ}\) 6   11
    5. \(90^{\circ}\) \(12^{\circ}\)   19    
    6.   \(90^{\circ}\)     17 10
    7. \(90^{\circ}\) \(10^{\circ}\)     2  
    8. \(4^{\circ}\) \(90^{\circ}\)   0.3    
    9. \(\frac{\pi}{2}\)радіан   1 радіан     15
    10.     \(\frac{\pi}{2}\)радіан 12 15  
    11.     \(\frac{\pi}{2}\)радіан   9 14
    12. \(\frac{\pi}{4}\)радіан \(\frac{\pi}{4}\)радіан     5  
    13. \(\frac{\pi}{2}\)радіан     26 13  
    14.   \(\frac{\pi}{2}\)радіан     19 16
    15.     \(\frac{\pi}{2}\)радіан

    10

      \(10 \sqrt{2}\)