14.5: Теорема про зсув
- Page ID
- 78757
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)
Це дуже корисна теорема, і така, яку майже тривіально довести. (Спробуйте!) Це
\[\textbf{L}\left(e^{-at} y(t) \right) = \bar{y}(s+a).\]
Наприклад, з таблиці, у нас є\(\textbf{L}(t) = 1/s^2\). The shifting theorem tells us that \(\textbf{L}\left(te^{-at} \right) = 1/(s+a)^2\). I'm sure you will now want to expand your table even more. Or you may want to go the other way, and cut down the table a bit! After all, you know that \(\textbf{L}(1) = 1/s\). Теорема зсуву, значить, говорить вам про те\(\textbf{L}(e^{at}) = 1/(s-a)\) , що запис в таблиці зайвий! Зауважте, що ви можете використовувати теорему для виведення прямих або обернених перетворень.
