Skip to main content
LibreTexts - Ukrayinska

9.1: Спрощення раціональних виразів

  • Page ID
    66130
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Визначення: Раціональне вираження

    Раціональний вираз пишеться як частка многочленів

    \[\dfrac{P(x)}{Q(x)} \nonumber \]

    де\(P(x)\) і\(Q(x)\) є многочлени в одній змінній\(x\).

    Щоб спростити раціональний вираз, множьте і чисельник, і знаменник, і приберіть спільні множники як з чисельника, так і з знаменника. Спрощений раціональний вираз має лише одне ділення, а також єдиний чисельник і знаменник. Якщо вирази не можуть бути враховані, то раціональний вираз спростити неможливо.

    Приклад Template:index

    Спростіть раціональні вирази:

    1. \(\dfrac{x^2 + 2x − 3}{x^2 + 4x + 3}\)
    2. \(\dfrac{(x^2 + 1)^2 (−2) + (2x)(2)(x^2 + 1)(2x)}{(x^2 + 1)^4}\)
    3. \(\dfrac{(x^2 + 1) \frac{1}{2} (x^{−\frac{1}{2}}) − (2x)(x^{\frac{1}{2}})}{(x^2 + 1)^2}\)

    Рішення

    1. \(\begin{array} &&\dfrac{x^2 + 2x − 3}{x^2 + 4x + 3} &\text{Example problem} \\ &\dfrac{(x + 3)(x − 1)}{(x + 3)(x + 1)} &\text{Factor both numerator and denominator.} \\ &\dfrac{\cancel{(x + 3)}(x − 1)}{\cancel{(x + 3)}(x + 1)} &\text{Remove common factors, because \(\dfrac{x + 3}{x + 3} = 1\)}\\ &\ dfrac {x − 1} {x + 1} &\ text {Остаточна відповідь}\ end {масив}\)
    1. \(\begin{array} &&\dfrac{(x^2 + 1)^2 (−2) + (2x)(2)(x^2 + 1)(2x)}{(x^2 + 1)^4} &\text{Example problem} \\ &\dfrac{2(x^2 + 1)[(x^2 + 1)(−1) + (2x)(2x)]}{(x^2 + 1)^4} &\text{Factor out 2(x^2 + 1)} \\ &\dfrac{2 \cancel{(x^2 + 1)}[(x^2 + 1)(−1) + (2x)(2x)]}{\cancel{(x^2+1)}(x^2 + 1)^3} &\text{Remove common factors, because \(\dfrac{x^2 + 1}{x^2 + 1} = 1\)}\\ &\ dfrac {2 [−x^2 − 1 + 4x^2]} {(x^2 + 1) ^3} &\ text {Спрощення шляхом множення та комбінування подібних термінів}\\ &\ dfrac {2 (3x^2 − 1)} {(x^2 + 1) ^3} &\ text {Остаточна відповідь}\ кінець {масив}\)
    1. \(\begin{array} &&\dfrac{(x^2 + 1) \frac{1}{2} (x^{−\frac{1}{2}}) − (2x)(x^{\frac{1}{2}})}{(x^2 + 1)^2} &\text{Example problem} \\ &\dfrac{\frac{(x^2+1)}{2x^{\frac{1}{2}}} − (2x)(x^{ \frac{1}{2} })}{(x^2 + 1)^2} &\text{Work with the negative exponent in the first term of the numerator by moving the factor to the denominator of the first term, next to the \(2\).}\\ &\ dfrac {(x^2 + 1) − (2x) (x^ {\ frac {1} {2}}) 2 (x^ {\ frac {1} {2}})} {\ dfrac {2x^ {\ frac {1}}} {(x^2 + 1) ^2}}} &\ text {Загальний знаменник}\\ &\ dfrac {x^2+ 1 − 4x^2} {(2x^ {\ frac {1} {2}}) (x^2+ 1) ^2} &\ text {Спрощення шляхом множення та комбінування подібних термінів}\\ &\ dfrac {−3x^2 + 1} {(2x^ {\\ frac {1} {2}}) (x^2 + 1) ^2} &\ text {Остаточна відповідь}\ end {масив}\)
    Вправа Template:index

    Спростіть раціональні вирази:

    1. \(\dfrac{2x^2 + 3x − 2}{2x^2 + 5x − 3}\)
    2. \(\dfrac{(t^2 + 4)(2t − 4) − (t^2 − 4t + 4)(2t)}{(t^2 + 4)^2}\)
    3. \(\dfrac{(2)(x − 4)(x^2 + 4x + 4)}{(x + 2)(x^2 − 16)}\)
    4. \(\dfrac{12x^2 + 19x − 21}{12x^2 + 38x − 40}\)