Skip to main content
LibreTexts - Ukrayinska

4.11: Функції кускового визначення

  • Page ID
    66062
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Визначення: Кусково визначені функції

    Кусково визначені функції - це функції, які визначаються за допомогою різних рівнянь для різних частин області.

    Приклад Template:index

    Оцінити таку кусково визначену функцію для заданих\(x\) значень та графік функції:

    \(f(x) = \left\{\begin{array}{cc}−2x + 1 & −1 \leq x < 0 \\ x^2 + 2 &0 \leq x \leq 2\end{array} \right.\)

    Рішення

    Для побудови графіка цієї функції складіть таблицю розв'язків:

    Таблиця рішень для\(f(x) = −2x + 1 \)

    Домен\(−1 \leq x < 0\)

    \(x\) \(f(x)\)
    -1 3
    0 1 (відкрите коло тут, 0 не в домені)

    Таблиця рішень для\(f(x) = x^2 + 2\)

    Домен\(0 \leq x \leq 2\)

    \(x\) \(f(x)\)
    0 2
    1 3
    2 6
    clipboard_e94fd5197718a7373772af1280306cf06.png
    Рисунок Template:index
    Приклад Template:index

    Оцінити таку кусково визначену функцію для заданих\(x\) значень та графік функції:

    \(f(x) = \left\{\begin{array}{cc} −x + 1 &x \leq −1 \\ 2 & −1 < x \leq 1 \\ −x + 3 &x > 1 \end{array}\right.\)

    Рішення

    Щоб зробити графік цієї функції, ще раз складіть таблицю розв'язків:

    Таблиця рішень для\(f(x) = −x + 1\)

    Домен\(x \leq −1\)

    \(x\) \(f(x)\)
    -3 4
    -2 3
    -1 2 (тут замкнуте коло, -1 знаходиться в домені)

    Таблиця рішень для\(f(x) = 2\)

    Домен\(−1 < x \leq 1\)

    \(x\) \(f(x)\)
    -1 2 (відкрите коло, заповнене попередньою функцією, -1 не в домені)
    0 2
    1 2 (тут замкнуте коло, 1 знаходиться в домені)

    Таблиця рішень для\(f(x) = −x + 3\)

    Домен\(x > 1\)

    \(x\) \(f(x)\)
    1 2 (відкрите коло, заповнене попередньою функцією, 1 не в домені)
    2 1
    3 0
    clipboard_e795cd2fce50083772c8741bdcad72855.png
    Рисунок Template:index
    Вправа Template:index

    Оцінити наступні кусково визначені функції для заданих значень x і графік функцій:.

    1. \ (f (x) =\ ліворуч\ {\ begin {масив} {cc}
      x & x<0\\
      2 x+1 &x\ geq 0
      \ end {масив}\ праворуч.\)
    2. \(g(x) = \left\{\begin{array}{cc} 4 − x& x < 2\\ 2x − 2 &x \geq 2 \end{array} \right.\)
    3. \(h(x) = \left\{\begin{array}{cc} −x − 1 & x < −1 \\ 0& −1 \leq x \leq 1 \\ x + 1 & x > 1 \end{array} \right.\)
    4. \(g(x) = \left\{\begin{array}{cc} 6 & −8 \leq x < −4 \\ 3 &−4 \leq x \leq 5 \end{array}\right.\)
    5. \(f(x) = \left\{\begin{array}{cc} −x + 1 & −1 \leq x < 1 \\ \sqrt{x − 1 } &1 \leq x \leq 5\end{array}\right.\)